Forskolin As a Neuroprotector and Modulator of Glutamate-Evoked Ca2+ Entry into Cerebellar Neurons

  • M. A. Ivanova
  • L. S. Sitnikova
  • Yu. D. Stepanenko
  • T. V. Karelina
  • D. A. Sibarov
  • P. A. AbushikEmail author
  • S. M. Antonov


The analysis of neuronal viability of cerebellar neurons in primary culture during long-lasting (240 min) treatment with glutamate revealed that forskolin (1 μM), an adenylate cyclase activator, prevents apoptosis and necrosis of cells, thus exhibiting neuroprotective properties. As the cytotoxic action of glutamate causes an increase of the intracellular Ca2+ concentration, we further studied forskolin influence on glutamate-evoked Ca2+ responses of neurons. A short-time pretreatment with 1 μM forskolin significantly decreases Ca2+ entry into neurons during glutamate action. The obtained results demonstrate an important role of adenylate cyclase and cAMP in regulation of the Ca2+ entry into neurons and intracellular signaling pathways preventing neuronal death of cerebellar neurons in excytotoxic stress.


neurodegeneration glutamate forskolin neuroprotection apoptosis calcium 



The work was supported by the Russian Foundation for Basic Research (project no. 16-04-00653) and by the scholarship of the Russian Federation President. Sopported by RF state program № АААА-А18-118012290427-7.


Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.


  1. 1.
    Lucas D.R., Newhouse J.P. 1957. The toxic effect of the sodium L-glutamate on the inner layers of the retina. AMA Arch. Ophthalmol. 58 (2), 193–201.CrossRefGoogle Scholar
  2. 2.
    Lipton S.A., Rosenberg P.A. 1994. Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med. 330 (9), 613–621.CrossRefGoogle Scholar
  3. 3.
    Arundine M., Tymianski M. 2004. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell. Mol. Life Sci. 61 (6), 657–668.CrossRefGoogle Scholar
  4. 4.
    Fan M.M., Raymond L.A. 2007. N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington’s disease. Prog. Neurobiol. 81 (5–6), 272–293.CrossRefGoogle Scholar
  5. 5.
    Abushik P.A., Sibarov D.A., Eaton M.J., Skatchkov S.N., Antonov S.M. 2013. Kainate-induced calcium overload of cortical neurons in vitro: dependence on expression of AMPAR GluA2-subunit and down-regulation by subnanomolar ouabain. Cell Calcium. 54 (2), 95–104.CrossRefGoogle Scholar
  6. 6.
    Choi D.W. 1987. Ionic dependence of glutamate neurotoxicity. J. Neurosci. 7 (2), 369–379.CrossRefGoogle Scholar
  7. 7.
    Choi D.W., Maulucci-Gedde M., Kriegstein A.R. 1987. Glutamate neurotoxicity in cortical cell culture. J. Neurosci. 7 (2), 357–368.CrossRefGoogle Scholar
  8. 8.
    Hardingham G.E., Bading H. 2010. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat. Rev. Neurosci. 11 (10), 682–696.CrossRefGoogle Scholar
  9. 9.
    Hardingham G.E., Fukunaga Y., Bading H. 2002. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci. 5 (5), 405–414.CrossRefGoogle Scholar
  10. 10.
    Papadia S., Stevenson P., Hardingham N.R., Bading H., Hardingham G. E. 2005. Nuclear Ca2+ and the cAMP response element-binding protein family mediate a late phase of activity-dependent neuroprotection. J. Neurosci. 25 (17), 4279–4287.CrossRefGoogle Scholar
  11. 11.
    Huang H., Wang H., Figueiredo-Pereira M.E. 2013 Regulating the ubiquitin/proteasome pathway via cAMP-signaling: neuroprotective potential. Cell Biochem. Biophys. 67 (1), 55–66.CrossRefGoogle Scholar
  12. 12.
    Maruoka H., Sasaya H., Sugihara K., Shimoke K., Ikeuchi T. 2011. Low-molecular-weight compounds having neurotrophic activity in cultured PC12 cells and neurons. J. Biochem. 150 (5), 473–475.CrossRefGoogle Scholar
  13. 13.
    Hockberger P.E., Tseng H.Y., Connor J.A. 1989. Development of rat cerebellar Purkinje cells: Electrophysiological properties following acute isolation and in long-term culture. J. Neurosci. 9 (7), 2258–2271.CrossRefGoogle Scholar
  14. 14.
    Mironova E.V., Evstratova A.A., Antonov S.M. 2007. A fluorescence vital assay for the recognition and quantification of excitotoxic cell death by necrosis and apoptosis using confocal microscopy on neurons in culture. J. Neurosci. Methods. 163 (1), 1–8.CrossRefGoogle Scholar
  15. 15.
    Sibarov D.A., Bolshakov A.E., Abushik P.A., Krivoi I.I., Antonov S.M. 2012. Na+,K+-ATPase functionally interacts with the plasma membrane Na+,Ca2+-exchanger to prevent Ca2+ overload and neuronal apoptosis in excitotoxic stress. J. Pharmacol. Exp. Ther. 343 (3), 596–607.CrossRefGoogle Scholar
  16. 16.
    Jóźwiak-Bebenista M., Kowalczyk E., Nowak J.Z. 2015. The cyclic AMP effects and neuroprotective activities of PACAP and VIP in cultured astrocytes and neurons exposed to oxygen-glucose deprivation. Pharmacol. Rep. 67 (2), 332–338.CrossRefGoogle Scholar
  17. 17.
    Lakk M., Denes V., Gabriel R. 2015. Pituitary adenylate cyclase-activating polypeptide receptors signal via phospholipase C pathway to block apoptosis in newborn rat retina. Neurochem. Res. 40 (7), 1402–1409.CrossRefGoogle Scholar
  18. 18.
    Bading H. 2013. Nuclear calcium signalling in the regulation of brain function. Nat. Rev. Neurosci. 14 (9), 593–608.CrossRefGoogle Scholar
  19. 19.
    Bas-Orth C., Bading H. 2013. The divergence-convergence model of acquired neuroprotection. Mech. Dev. 130 (6–8), 396–401.CrossRefGoogle Scholar
  20. 20.
    Reglodi D., Kiss P., Lubics A., Tamas A. 2011. Review on the protective effects of PACAP in models of neurodegenerative diseases in vitro and in vivo. Curr. Pharm. Des. 17 (10), 962–972.CrossRefGoogle Scholar
  21. 21.
    Abushik P.A., Bart G., Korhonen P., Leinonen H., Giniatullina R., Sibarov D.A., Levonen A.-L., Malm T., Antonov S.M., Giniatullin R. 2016. Pro-nociceptive migraine mediator CGRP provides neuroprotection of sensory, cortical and cerebellar neurons via multi-kinase signaling. Cephalalgia. doi 10.1177/0333102416681588Google Scholar
  22. 22.
    Abushik P.A., Niittykoski M., Giniatullina R., Shakirzyanova A., Bart G., Fayuk D., Sibarov D.A., Antonov S.M., Giniatullin R. 2014. The role of NMDA and mGluR5 receptors in calcium mobilization and neurotoxicity of homocysteine in trigeminal and cortical neurons and glial cells. J. Neurochem. 129 (2), 264–274.CrossRefGoogle Scholar
  23. 23.
    Sibarov D.A., Abushik P.A., Giniatullin R., Antonov S.M. 2016. GluN2A subunit-containing NMDA receptors are the preferential neuronal targets of homocysteine. Front. Cell. Neurosci. 10 (246). doi 10.1177/0333102416681588Google Scholar
  24. 24.
    El-hassar L., Hagenston A.M., D’angelo L.B., Yeckel M.F. 2011. Metabotropic glutamate receptors regulate hippocampal CA1 pyramidal neuron excitability via Ca2+ wave-dependent activation of SK and TRPC channels. J. Physiol (Lond). 589, 3211–3229.CrossRefGoogle Scholar
  25. 25.
    García-Bermúdez J., Sánchez-Aragó M., Soldevilla B., Del Arco A., Nuevo-Tapioles C., Cuezva J.M. 2015. PKA phosphorylates the ATPase inhibitory factor 1 and inactivates its capacity to bind and inhibit the mitochondrial H+-ATP synthase. Cell Rep. 12, 2143–2155.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. A. Ivanova
    • 1
  • L. S. Sitnikova
    • 1
  • Yu. D. Stepanenko
    • 1
  • T. V. Karelina
    • 1
  • D. A. Sibarov
    • 1
  • P. A. Abushik
    • 1
    Email author
  • S. M. Antonov
    • 1
  1. 1.Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations