Advertisement

Cell and Tissue Biology

, Volume 13, Issue 4, pp 276–282 | Cite as

The Effect of Soluble Recombinant Protein Dll4-Fc on the Functional Activity of Endothelial Cells In Vitro and Vascularization In Vivo

  • J. I. KhorolskayaEmail author
  • O. I. Aleksandrova
  • I. A. Samusenko
  • N. A. Mikhailova
  • I. B. Lobov
  • N. M. Yudintceva
  • M. I. Blinova
Article
  • 13 Downloads

Abstract

Restoration of the microvasculature system is necessary for wound healing. Increased angiogenesis in damaged tissue can positively affect the speed and quality of its recovery. The paper analyzes the effect of the soluble recombinant protein Dll4-Fc on the functional activity of human endothelial cells HUVEC, HUVEC-56, and ECV-304 cultivated under two-dimensional (2D) and three-dimensional (3D) conditions in vitro and the formation of the capillary network during wound healing in rats in vivo. The goal was possible use of Dll4-Fc protein in biomedical cell products aimed at stimulating the growth of blood vessels in the process of damaged-organ and -tissue repair. The results showed that Dll4-Fc did not affect the proliferative and migratory activity of endotheliocytes cultivated under 2D conditions. However, a positive effect of Dll4-Fc on the morphology of the endotheliocyte layer and formation of capillary-like structures was revealed in 3D ECV-304 cells cultivated on the surface of collagen gel. For the first time, the positive effect of the “dermal equivalent” in a composition with endothelial cells of the human umbilical HUVEC and Dll4-Fc on the formation of blood vessels in the area of healing was shown.

Keywords:

Notch signaling Dll4-Fc protein angiogenesis endothelial cells dermal fibroblasts dermal equivalent biomedical cell product 

Notes

FUNDING

This study was supported by the Russian Foundation for Basic Research, project no. 15-29-04852/15-ofi-m.

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. This article does not contain any studies involving human participants performed by any of the authors.

Statement on the welfare of animals. All procedures were carried out according to the rules for the treatment of laboratory animals set out by the OLAWNIH document (identification no. F18-00380, Institute of Cytology, Russian Academy of Sciences).

REFERENCES

  1. 1.
    Benedito, R., Roca, C., Sörensen, I., Adams, S., Gossler, A., Fruttiger, M., and Adams, R.H., The Notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis, Cell, 2009, vol. 137, no. 6, pp. 1124–1135.CrossRefPubMedGoogle Scholar
  2. 2.
    Blinova, M.I., Yudintseva, N.M., Aleksandrova, O.I., Balluzek, M.F., Khabarova, I.G., Markin, S.M., and Chagunava, O.L., Clinical experience in the healing of trophic ulcers using the cell-based product “Dermal equivalent DE,” Khir. Bolezni, 2015, vol. 4, no. 5, pp. 690–695.Google Scholar
  3. 3.
    Chandrakasan, G., Torchia, D.A., and Piez, K.A., Preparation of intact monomeric collagen from rat tail tendon and skin and the structure of the nonhelical ends in solution, J. Biol. Chem., 1976, vol. 251, pp. 6062–6067.PubMedGoogle Scholar
  4. 4.
    Chwalek, K., Tsurkan, M.V., Freudenberg, U., and Werner, C., Glycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis models, Sci. Rep., 2014, vol. 4, p. 4414.  https://doi.org/10.1038/srep04414 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Folkman, J., Tumor angiogenesis: therapeutic implications, New Eng. J. Med., 1971, vol. 285, pp. 1182–1186.CrossRefPubMedGoogle Scholar
  6. 6.
    Groeber, F., Engelhardt, L., Lange, J., Kurdyn, S., Schmid, F.F., Rücker, C., Mielke, S., Walles, H., and Hansmann, J., A first vascularized skin equivalent as an alternative to animal experimentation, Altex, 2016, vol. 33, pp. 415–422.PubMedGoogle Scholar
  7. 7.
    Johnson, K.E. and Wilgus, T.A., Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair, Adv. Wound Care, 2014, vol. 3, pp. 647–661.CrossRefGoogle Scholar
  8. 8.
    Jojovic, M., Wolf, F., and Mangold, U., Epidermal growth factor, vascular endothelial growth factor and progesterone promote placental development in rat whole-embryo culture, Anat. Embryol., 1998, vol. 198, pp. 133–139.CrossRefPubMedGoogle Scholar
  9. 9.
    Lobov, I. and Mikhailova, N., The role of Dll4/Notch signaling in normal and pathological ocular angiogenesis: Dll4 controls blood vessel sprouting and vessel remodeling in normal and pathological conditions, J. Ophthalmol., 2018, vol. 2018.  https://doi.org/10.1155/2018/3565292
  10. 10.
    Lobov, I.B., Renard, R.A, Papadopoulos, N., Gale, N.W., Thurston, G., Yancopoulos, G.D., and Wiegand, S.J., Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, pp. 3219–3224.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lobov, I.B., Cheung, E., Wudali, R., Cao, J., Halasz, G., Wei, Y., Economides, A., Lin, H.C., Papadopoulos, N., Yancopoulos, G.D., and Wiegand, S.J., The Dll4/Notch pathway controls postangiogenic blood vessel remodeling and regression by modulating vasoconstriction and blood flow, Blood, 2011, vol. 117, pp. 6728–6737.CrossRefPubMedGoogle Scholar
  12. 12.
    Montaño, I., Schiestl, C., Schneider, J., Pontiggia, L., Luginbühl, J., Biedermann, T., Böttcher-Haberzeth, S., Braziulis, E., Meuli, M., and Reichmann, E., Formation of human capillaries in vitro: the engineering of prevascularized matrices, Tiss. Eng. A, 2010, vol. 16, pp. 269–282.CrossRefGoogle Scholar
  13. 13.
    Mzhavanadze, N.D., Bozo, I.Y., Kalinin, R.E., and Deev, R.V., Realities and prospects of gene therapy in cardiovascular surgery, Klet. Transplantol. Tkan. Inzh., 2012, vol. 7, pp. 58–62.Google Scholar
  14. 14.
    Noguera-Troise, I., Daly, C., Papadopoulos, N.J., Coetzee, S., Boland, P., Gale, N.W., Lin, H.C., Yancopoulos, G.D., and Thurston, G., Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis, Nature, 2006, vol. 444, pp. 1032–1037.CrossRefPubMedGoogle Scholar
  15. 15.
    Rizzo, P., Mele, D., Caliceti, C., Pannella, M., Fortini, C., Clementz, A.G., Morelli, M.B., Aquila, G., Ameri, P., and Ferrari, R., The role of Notch in the cardiovascular system: potential adverse effects of investigational Notch inhibitors, Front. Oncol., 2014, vol. 4, p. 384.  https://doi.org/10.3389/fonc.2014.00384 CrossRefPubMedGoogle Scholar
  16. 16.
    Scehnet, J.S., Jiang, W., Kumar, S.R., Krasnoperov, V., Trindade, A., Benedito, R., Djokovic, D., Borges, C., Ley, E.J., Duarte, A., Gill, and P.S., Inhibition of Dll4-mediated signaling induces proliferation of immature vessels and results in poor tissue perfusion, Blood, 2007, vol. 109, pp. 4753–4760.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Schrementi, M.E., Ranzer, M.J., and Dipietro, L.A., Impaired wound repair and delayed angiogenesis, in Textbook of Aging Skin, Farage, M., Miller, K., and Maibach, H., Eds., Berlin: Springer, 2017, pp. 1003–1015.  https://doi.org/10.1007/978-3-662-47398-6_85 Google Scholar
  18. 18.
    Shing, Y., Folkman, J., Sullivan, R., Butterfield, C., Murray, J., and Klagsbrun, M., Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor, Science, 1984, vol. 223, pp. 1296–1299.CrossRefPubMedGoogle Scholar
  19. 19.
    Suchting, S., Freitas, C., le, Noble, F., Benedito, R., Bréant, C., Duarte, A., and Eichmann, A., The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, pp. 3225–3230.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Tremblay, P.L., Hudon, V., Berthod, F., Germain, L., and Auger, F.A., Inosculation of tissue-engineered capillaries with the host’s vasculature in a reconstructed skin transplanted on mice, Am. J. Transplant., 2005, vol. 5, pp. 1002–1010.CrossRefPubMedGoogle Scholar
  21. 21.
    Trindade, A., Djokovic, D., Gigante, J., Badenes, M., Pedrosa, A.R., Fernandes, A.C., Lopes-da-Costa, L., Krasnoperov, V., Liu, R., Gill, P.S., and Duarte, A., Low-dosage inhibition of Dll4 signaling promotes wound healing by inducing functional neo-angiogenesis, PLoS One, 2012, vol. 7, no. 1.  https://doi.org/10.1371/journal.pone.0029863
  22. 22.
    Zorin, V.L., Zorina, A.I., and Cherkasov, V.R., Analysis of a foreign market of regenerative medicine, Klet. Transplantol. Tkan. Inzh., 2009, vol. 4, no. 3, pp. 68–78.Google Scholar
  23. 23.
    Zorin, V.L., Cherkasov, V.R., Zorina, A.I., and Deev, R.V., The characteristics of world market cell technologies, Klet. Transplantol. Tkan. Inzh., 2010, vol. 5, no. 3, pp. 96–115.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • J. I. Khorolskaya
    • 1
    Email author
  • O. I. Aleksandrova
    • 1
  • I. A. Samusenko
    • 2
  • N. A. Mikhailova
    • 1
  • I. B. Lobov
    • 1
  • N. M. Yudintceva
    • 1
  • M. I. Blinova
    • 1
  1. 1.Institute of Cytology, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.“Nikiforov Center of Emergency and Radiation Medicine” of the Ministry of Russian Federation for Civil DefenseSt. PetersburgRussia

Personalised recommendations