Cell and Tissue Biology

, Volume 12, Issue 6, pp 468–476 | Cite as

Proliferation of Mouse Retinal Müller Cells in Response to Methylnitrosourea-Induced Retinotoxic Stress

  • V. A. TronovEmail author
  • E. I. Nekrasova
  • M. A. Ostrovsky


Single intraperitoneal injection of methylnitrosourea (MNU) induces in mice the loss of retinal photoreceptors as a nonlinear dose response (Tronov et al. 2015). DNA repair was the putative mechanism for causing a threshold of DNA alkylation in retina cells. Photoreceptor degeneration can stimulate Müller glial cells to transdifferentiate into photoreceptor-like cells in adult mouse retina treated with MNU (Wan et al., 2008). In this paper, we evaluated Müller cell proliferative response to different doses of MNU and compared the response to DNA damage and repair in suspensions of retinal and Müller cells using a comet assay and BrdU (thymidine analogue) as a marker of proliferation. MNU administration in the dose ≤ 40 mg/kg did not result in the activation of Müller cell proliferation in 3 days after the treatment. By this time point, no DNA damage after this dose was observed. For MNU doses that exceed 50 mg/kg, TUNEL-detected death of retinal photoreceptors increased more than 10-fold in the proliferating pool of Müller cells. DNA breaks (single- and double-strand breaks and AP sites) were observed. The results are discussed within the framework of the concept of misbalance of excision repair that results in formation of cytotoxic intermediates in DNA initiated death of photoreceptors followed by activation of Müller retinal cells.


retina Müller cells DNA damage repair methylnitrosourea 



This study was supported by Russian Foundation for Basic Research, project no. 16-04-00133 а.


Сonflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. The ethical principles and requirements stated in the World Medical Association Declaration of Helsinki: were followed.


  1. 1.
    Ahel, D., Horejs, Z., Wiechens, N., Polo, S.E., Garcia-Wilson, E., Ahel, I., Flynn, H., Skehel, M., West, S.C., Jackson, S.P., Owen-Hughes, T., and Boulton, S.J., Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1, Science, 2009, vol. 325, pp. 1240–1243.CrossRefGoogle Scholar
  2. 2.
    Allocca, M., Corrigan, J.J., Fake, K.R., Calvo, J.A., and Samson, L.D., PARP inhibitors protect against sex- and AAG-dependent alkylation-induced neural degeneration. Oncotarget, 2017, vol. 8, pp. 68707–68720.CrossRefGoogle Scholar
  3. 3.
    Beranek, D.T., Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents, Mutat. Res., 1990, vol. 231, pp. 11–30.CrossRefGoogle Scholar
  4. 4.
    Bignami, M., O’Driscoll, M., Aquilina, G., and Karran, P., Unmasking a killer: DNA O(6)-methylguanine and the cytotoxicity of methylating agents. Mutat. Res., 2000, vol. 462, pp. 71–82.CrossRefGoogle Scholar
  5. 5.
    Cao, W., Tombran-Tink, J., Elias, R., Sezate, S., Mrazek, D., and McGinnis, J.F., In vivo protection of photoreceptors from light damage by pigment epithelium-derived factor, Invest. Ophthalmol.Visual Sci., 2001, vol. 42, pp. 1646–1652.Google Scholar
  6. 6.
    Chandna, S., Single-cell gel electrophoresis assay monitors precise kinetics of DNA fragmentation induced during programmed cell death, Cytometry A, 2004, vol. 61, pp. 127–133.CrossRefGoogle Scholar
  7. 7.
    Fu, D., Calvo, J.A., and Samson, L.D., Balancing repair and tolerance of DNA damage caused by alkylating agents, Nature Rev. Cancer, 2012, vol. 12, pp. 104–120.CrossRefGoogle Scholar
  8. 8.
    Gorgels, T.G., van der Pluijm, I., Brandt, R.M., Garinis, G.A., van Steeg, H., van den Aardweg, G., Jansen, G.H., Ruijter, J.M., Bergen, A.A., van Norren, D., Hoeijmakers, J.H., and van der Horst, G.T., Retinal degeneration and ionizing radiation hypersensitivity in a mouse model for Cockayne syndrome, Mol. Cell. Biol., 2007, vol. 27, pp. 1433–1441.CrossRefGoogle Scholar
  9. 9.
    Hegde, M.L., Hazra, T.K., and Mitra, S., Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells, Cell Res., 2008, vol. 18, pp. 27–47.CrossRefGoogle Scholar
  10. 10.
    Iandiev, I., Uckermann, O., Pannicke, T., Wurm, A., Tenckhoff, S., Pietsch, U.C., Reichenbach, A., Wiedemann, P., Bringmann, A., and Uhlmann, S., Glial cell reactivity in a porcine model of retinal detachment. Invest. Ophthalmol. Visual Sci., 2006, vol. 47, pp. 2161–2171.CrossRefGoogle Scholar
  11. 11.
    Jayakody, S.A., Gonzalez-Cordero, A., Ali, R.R., and Pearson, R.A., Cellular strategies for retinal repair by photoreceptor replacement, Progress Retinal Eye Res., 2015, vol. 46, pp. 31–66.CrossRefGoogle Scholar
  12. 12.
    Kiuchi, K., Kondo, M., Ueno, S., Moriguchi, K., Yoshizawa, K., Miyake, Y., Matsumura, M., and Tsubura, A., Functional rescue of N-methyl-N-nitrosourea-induced retinopathy by nicotinamide in Sprague–Dawley rats, Current Eye Res., 2003, vol. 26, pp. 355–62.CrossRefGoogle Scholar
  13. 13.
    Koag, M.C., Kou, Y., Ouzon-Shubeita, H., and Lee, S., Transition-state destabilization reveals how human DNA polymerase β proceeds across the chemically unstable lesion N7-methylguanine, Nucleic Acids Res., 2014, vol. 42, pp. 8755–8766.CrossRefGoogle Scholar
  14. 14.
    Końca, K., Lankoff, A., Banasik, A., Lisowska, H., Kuszewski, T., Góźdź, S., Koza Z. Wojcik, A., A cross-platform public domain PC image-analysis program for the comet assay, Mutat. Res., 2003, vol. 534, pp. 15–20.CrossRefGoogle Scholar
  15. 15.
    Meira, L.B., Moroski-Erkul, C.A., Green, S.L., Calvo, J.A., Bronson, R.T., Shah, D., and Samson, L.D., Aag-initiated base excision repair drives alkylation-induced retinal degeneration in mice. Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, pp. 888–893.CrossRefGoogle Scholar
  16. 16.
    Mirzoeva, O.K., Kawaguchi, T., and Pieper, R.O., The Mre11/Rad50/Nbs1 complex interacts with the mismatch repair system and contributes to temozolomide-induced G2 arrest and cytotoxicity, Mol. Cancer Ther., 2006, vol. 5, pp. 2757–2766.CrossRefGoogle Scholar
  17. 17.
    Noda, Y., Sumino, T., Fujisawa, Y., Miyata, N., Kaiya, T., and Kohda, K., 1-Amino-4-phenyl-1,2,3,6-tetrahydropyridine and 1-amino-4-phenylpyridinium salt, the 1-amino analogues of neurotoxins, MPTP and MPP+, induce apoptosis in PC12 cells: detection of apoptotic cells by comet assay and flow cytometric analysis, In Vivo (Athens, Greece), 2004, vol. 18, pp. 561–569.Google Scholar
  18. 18.
    Ooto, S., Akagi, T., Kageyama, R., Akita, J., Mandai, M., Honda, Y., and Takahashi, M., Potential for neural regeneration after neurotoxic injury in the adult mammalian retina, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, pp. 13654–13659.CrossRefGoogle Scholar
  19. 19.
    Tronov, V.A., Konstantinov, E.M., and Kramarenko, I.I., Role of excision mechanisms of DNA repair in induction of apoptosis, Biochemistry (Moscow), 2002, vol. 67, no. 7, pp. 730–736.Google Scholar
  20. 20.
    Tronov, V.A., Vinogradova, Yu.V., Loginova, M.Yu., Poplinskaya, V.A., and Ostrovskii, M.A., Mechanisms of radioresistance in terminally differentiated cells of mature retina, Cell Tissue Biol., 2012, vol. 6, no. 3, pp. 219–227.CrossRefGoogle Scholar
  21. 21.
    Tronov, V.A., Vinogradova, Yu.V., Poplinskaya, V.A., Nekrasova, E.I., and Ostrovskii, M.A., Radiation preconditioning in vivo increases the resistance of mouse retina to genotoxic exposure and stimulates its regeneration, Cell Tissue Biol., 2015, vol. 9, no. 3, pp. 198–207.CrossRefGoogle Scholar
  22. 22.
    Tsubura, A., Yoshizawa, K., Kuwata, M., and Uehara, N., Animal models for retinitis pigmentosa induced by MNU; disease progression, mechanisms and therapeutic trials, Histol. Histopathol., 2010, vol. 25, pp. 933–944.Google Scholar
  23. 23.
    Tsubura, A., Lai, Y.-C., Miki, H., Sasaki, T., Uehara, N., Yuri, T., and Yoshizawa, K., Animal models of N-Methyl-N-nitrosourea-induced mammary cancer and retinal degeneration with special emphasis on therapeutic trials, In Vivo (Athens, Greece), 2011, vol. 25, pp. 11–22.Google Scholar
  24. 24.
    Vinogradova, Yu. V., Tronov, V.A., Lyahova, K. N., Poplinskaya, V. A., and Ostrovsky, M. A., Damage and functional recovery of the mouse retina after exposure to genotoxic agents, Radiat. Biol. Radioecol., 2014, vol. 54, no. 4, pp. 385–392).Google Scholar
  25. 25.
    Wan, J., Zheng, H., Chen, Z.-L., Xiao, H.-L., Shen, Z.-J., and Zhou, G.-M., Preferential regeneration of photoreceptor from Muller glia after retinal degeneration in adult rat, Vision Res., 2008, vol. 48, pp. 223–234.CrossRefGoogle Scholar
  26. 26.
    Ying, W., Sevigny, M.B., Chen, Y., and Swanson, R.A., Poly(ADP-ribose) glycohydrolase mediates oxidative and excitotoxic neuronal death, 2001, Proc. Natl. Acad. Sci. U. S. A., 2001, vol. 98, pp. 12227–12232.CrossRefGoogle Scholar
  27. 27.
    Yoshizawa, K., Sasaki, T., Uehara, N., Kuro, M., Kimura, A., Kinoshita, Y., Miki, H., Yuri, T., and Tsubura, A., N-ethyl- N-nitrosourea induces retinal photoreceptor damage in adult rats, J. Toxicol. Pathol., 2012, vol. 25, pp. 27–35.CrossRefGoogle Scholar
  28. 28.
    Yuge, K., Nambu, H., Senzaki, H., Nakao, I., Miki, H., Uyama, M., and Tsubura, A., N-methyl-N-nitrosourea-induced photoreceptor apoptosis in the mouse retina, In Vivo (Athens, Greece), 1996, vol. 10, pp. 483–488.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Tronov
    • 1
    Email author
  • E. I. Nekrasova
    • 2
  • M. A. Ostrovsky
    • 2
  1. 1.Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia
  2. 2.Emanuel Institute of Biochemical Physics, Russian Academy of SciencesMoscowRussia

Personalised recommendations