Advertisement

Cell and Tissue Biology

, Volume 12, Issue 6, pp 496–505 | Cite as

Peculiarities of Phagocytosis of Opsonized and Nonopsonized Bacteria S. Aureus and E. Coli by Human Neutrophil Granulocytes Studied by Atomic Force Microscopy

  • S. N. PleskovaEmail author
  • R. N. Kriukov
  • E. V. Razumkova
  • S. Yu. Zubkov
  • N. V. Abarbanel
Article
  • 6 Downloads

Abstract

Differences in the phagocytosis process of opsonized and nonopsonized strains of Staphylococcus aureus 2879 M and Escherichia coli 321 were studied. Differences in the character of pseudopodia during phagocytosis by neutrophil granulocytes (NGs) of opsonized and nonopsonized bacteria were detected, and differences in the nature of pseudopodia in reactions to gram-positive and gram-negative microorganisms were not detected. For the first time in dynamic observations at the late stages of phagocytosis, changes in the volume of nuclei and their movement, variations in the intersegment distance of the nuclei, and a slight increase in the volume of NGs were shown. A decrease in the rigidity of the membrane–cytoskeleton NG complex correlating with the intensity of phagocytosis and opsonization of bacteria was shown for the first time. It was established that opsonization does not affect the oxygen-dependent metabolism of NGs and, at the same time, introduces significant adjustments in the implementation of oxygen-independent bactericidal mechanisms of cells.

Keywords:

neutrophil granulocytes phagocytosis opsonization S. aureus E. coli pseudopodia atomic force microscopy rigidity of the membrane–cytoskeleton complex 

Notes

ACKNOWLEDGMENTS

This study was supported by the Russian Science Foundation, project no. 16-14-10179.

COMPLIANCE WITH ETHICAL STANDARDS

Сonflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies with animals performed by any of the authors.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Blood sampling was performed in the morning, after the donors signed the consent form.

REFERENCES

  1. 1.
    Ackerman, G.A., A modification of the Sudan Black B technique for the possible cytochemical demonstration of masked lipids, J. Natl. Cancer Inst., 1952, vol. 13, pp. 219–220.Google Scholar
  2. 2.
    Arancibia, S.A., Beltrán, C.J., Aguirre, I.M., Silva, P., Peralta, A.L., Malinarich, F., and Hermoso, M.A., Toll-like receptors are key participants in innate immune responses, Biol. Res., 2007, vol. 40, pp. 97–112.CrossRefGoogle Scholar
  3. 3.
    Belotskii, S.M. and Avtalion, R.R., Vospalenie, mobilizatsiya kletok i klinicheskie effekty (Inflammation, Cell Mobilization and Clinical Effects), Moscow: Binom, 2008.Google Scholar
  4. 4.
    Brown, G.C., Vilalta, A., and Fricker, M., Phagoptosis—cell death by phagocytosis—plays central roles in physiology, host defense and pathology, Curr. Mol. Med., 2015, vol. 15, pp. 842–851.CrossRefGoogle Scholar
  5. 5.
    Bukharaev, A.A., Mozhanova, A.A., Nurgazizov, N.I., and Ovchinnikov, D.V., Measuring local elastic properties of cell surfaces and soft materials in liquid by atomic force microscopy, Phys. Low-Dimens. Struct., 2003, vols. 3–4, pp. 31–38.Google Scholar
  6. 6.
    Burstone, M.S., Histochemical demonstration of acid phosphatases with naphthol AS-phosphates, J. Natl. Cancer Inst., 1958, vol. 21, pp. 523–539.Google Scholar
  7. 7.
    Edmondson K.E., Denney W.S., and Diamond, S.L., Neutrophil-bead collision assay: pharmacologically induced changes in membrane mechanics regulate the PSGL-1/P-selectin adhesion lifetime, Biophys. J., 2005, vol. 89, pp. 3603–3614.CrossRefGoogle Scholar
  8. 8.
    Fritz-Laylin, L.K., Riel-Mehan, M., Chen, B.C., Lord, S.J., Goddard, T.D., Ferrin, T.E., Nicholson-Dykstra, S.M., Higgs, H., Johnson, G.T., Betzig, E., and Mullins, R.D., Actin-based protrusions of migrating neutrophils are intrinsically lamellar and facilitate direction changes, Elife, 2017. doi 10.7554/eLife.26990Google Scholar
  9. 9.
    Hayhoe, F.G.J. and Quaglino, D., Haematological Cytochemistry, Edinburgh: Churchill Livingstone, 1980. 336 p.Google Scholar
  10. 10.
    Leithner, A., Eichner, A., Müller, J., Reversat, A., Brown, M., Schwarz, J., Merrin, J., de Gorter, D.J., Schur, F., Bayerl, J., de Vries, I., Wieser, S., Hauschild, R., Lai, F.P., Moser, M., Kerjaschki, D., Rottner, K., Small, J.V., Stradal, T.E., and Sixt, M., Diversified actin protrusions promote environmental exploration but are dispensable for locomotion of leukocytes, Nat. Cell Biol., 2016, vol. 18, pp. 1253–1259.CrossRefGoogle Scholar
  11. 11.
    Loomis, W.F., Fuller, D., Gutierrez, E., Groisman, A., and Rappel, W.J., Innate non-specific cell substratum adhesion, PLoS One, 2012, vol. 7. doi 10.1371/journal.pone.0042033Google Scholar
  12. 12.
    Lu, T., Porter, A.R., Kennedy, A.D., Kobayashi, S.D., and DeLeo, F.R., Phagocytosis and killing of Staphylococcus aureus by human neutrophils, J. Innate Immun., 2014, vol. 6, pp. 639–649.CrossRefGoogle Scholar
  13. 13.
    Mayanskii, A.N., Patogeneticheskaya mikrobiologiya (Pathogenic Microbiology), Nizhny Novgorod: Izd. Nizhegorod. Gos. Med. Akad., 2006.Google Scholar
  14. 14.
    Mayanskii, A.N. and Pikusa, O.I., Klinicheskie aspekty fagotsitoza (The Clinical Aspects of Phagocytosis), Kazan: Magarif, 1993.Google Scholar
  15. 15.
    Møller, A.S., Ovstebø, R., Haug, K.B., Joø, G.B., Westvik, A.B., and Kierulf, P., Chemokine production and pattern recognition receptor (PRR) expression in whole blood stimulated with pathogen-associated molecular patterns (PAMPs), Cytokine, 2005, vol. 32, pp. 304–315.CrossRefGoogle Scholar
  16. 16.
    Nesterova, I.V., Kolesnikova, N.V., Chudilova, G.A., Lomtatidze, L.V., Kovaleva, S.V., Evglevskii, A.A., and Nguyen, T.D.L., The new look at neutrophilic granulocytes: rethinking old dogmas. Part 1., Infection Immunity, 2017, vol. 7, no. 3, pp. 219–230.CrossRefGoogle Scholar
  17. 17.
    Pigarevskii, V.E., Klinicheskaya morfologiya neitrofil’nykh granulotsitov (The Clinical Morphology of Neutrophil Granulocytes), Leningrad: Nauka, 1988.Google Scholar
  18. 18.
    Pleskova, S.N., Atomno-silovaya mikroskopiya v biologicheskikh i meditsinskikh issledovaniyakh (Atomic-Force Microscopy in Biology and Medicine), Dolgoprudnyi: Intellekt, 2011.Google Scholar
  19. 19.
    Pleskova, S.N., Guschina, Yu.Yu., and Zvonkova, M.B., Investigation of the influence of complement system on the various strains of proteus by methods of atomic force microscopy and luminol-dependent chemiluminescence, Phys. Low-Dimens. Struct, 2004, vols. 1–2, pp. 77–82.Google Scholar
  20. 20.
    Pleskova, S.N., Zvonkova, M.B., and Gushchina, Yu.Yu., Studying the neutrophil granulocytes morphological characteristics by scanning probe microscopy. Morphology, Arkh. Anat. Gistol. Embriol., 2005, vol. 127, no. 1, pp. 60–62.Google Scholar
  21. 21.
    Podosinnikov, I.S., Nilova, L.G., Babichenko, I.V., Turina, O.P., and Ponomareva, V.N., Method for determining the chemotactic activity of leukocytes, Lab. Delo, 1981, vol. 8, pp. 468–470.Google Scholar
  22. 22.
    Ryter, A. and De Chastellier, C., Phagocyte–pathogenic microbe interactions, Int. Rev. Cytol., 1983, vol. 85, pp. 287–327.CrossRefGoogle Scholar
  23. 23.
    Seimon T.A., Obstfeld A., Moore, K.J., Golenbock, D.T., and Tabas, I., Combinatorial pattern recognition receptor signaling alters the balance of life and death in macrophages, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, pp. 19794–19799.CrossRefGoogle Scholar
  24. 24.
    Shubich, M.G. and Nagoev, B.S., Shchelochnaya fosfataza leikotsitov v norme i patologii (Alkaline Phosphatase of Leukocytes in Norm and Pathology), Moscow: Meditsina, 1980.Google Scholar
  25. 25.
    Van Kessel, K.P., Bestebroer, J., and van Strijp, J.A., Neutrophil-mediated phagocytosis of Staphylococcus aureus, Front. Immunol., 2014, vol. 5. doi 10.3389/fimmu.2014.00467Google Scholar
  26. 26.
    Vandenbroucke-Grauls, C.M., Thijssen, H.M., and Verhoef, J., Opsonization of Staphylococcus aureus protects endothelial cells from damage by phagocytosing polymorphonuclear leukocytes, Infect. Immun., 1987, vol. 55, pp. 1455–1460.Google Scholar
  27. 27.
    Vargas, P., Maiuri, P., Bretou, M., Sáez, P.J., Pierobon, P., Maurin, M., Chabaud, M., Lankar, D., Obino, D., Terriac, E., Raab, M., Thiam, H.R., Brocker, T., Kitchen-Goosen, S.M., Alberts, A.S., Sunareni, P., Xia, S., Li, R., Voituriez, R., Piel, M., and Lennon-Duménil, A.M., Innate control of actin nucleation determines two distinct migration behaviours in dendritic cells, Nat. Cell Biol., 2016, vol. 18, pp. 43–53.CrossRefGoogle Scholar
  28. 28.
    Yang, C.W., Strong, B.S., Miller, M.J., and Unanue, E.R., Neutrophils influence the level of antigen presentation during the immune response to protein antigens in adjuvants, J. Immunol., 2010, vol. 185, pp. 2927–2934.CrossRefGoogle Scholar
  29. 29.
    Yang, C., Wang, L., Jia, Z., Yi, Q., Xu, Q., Wang, W., Gong, C., Liu, C., and Song, L., Two short peptidoglycan recognition proteins from Crassostrea gigas with similar structure exhibited different PAMP binding activity, Dev. Comp. Immunol., 2017, vol. 70, pp. 9–18.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. N. Pleskova
    • 1
    • 2
    Email author
  • R. N. Kriukov
    • 1
  • E. V. Razumkova
    • 1
    • 2
  • S. Yu. Zubkov
    • 1
  • N. V. Abarbanel
    • 1
    • 2
  1. 1.Scientific and Educational Center for Physics of Solid-State Nanostructures, Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  2. 2.Nanotechnology and Biotechnology Department, Alekseev Nizhny Novgorod State Technical University Nizhny NovgorodRussia

Personalised recommendations