Advertisement

Cell and Tissue Biology

, Volume 12, Issue 6, pp 484–490 | Cite as

Distribution of Nucleophosmine Proteins (B23) and Hyston H4 Lysine 20 (Н4К20me3) in the Granule Cells of the Rat Brain Cerebellum

  • I. M. PleshakovaEmail author
  • V. V. Guselnikova
  • D. A. Sufiyeva
  • D. E. Korzhevsky
Article
  • 3 Downloads

Abstract

The purpose of this study was to study the relative distribution of the nucleophosmin (B23) protein and histone H4K20me3 in the granule cells of the rat cerebellar cortex. The material for the study was the samples of the cerebellum of mature male rats of the Wistar line (n = 8). Using the methods of immunocytochemistry and confocal laser microscopy for the first time, the features of the distribution of the nucleophosmin protein in the nuclei of the cerebellar granule cells were studied. In the nucleolus, a region that was characterized by the lack of the B23 protein and, supposedly, a fibrillar center was found. In addition to the nucleolus, nucleophosmin was detected (in a smaller amount) in the nucleoplasm of the cell granules. Using the method of confocal laser microscopy and three-dimensional reconstruction, we demonstrated the presence of zones of colocalization of the B23 protein and histone H4K20me3 within the nucleolus and nucleoplasm of the cell granules. It was shown that histone H4K20me3 is part of the perinucleolus heterochromatin, from which various protrusions often extend into the interior of the nucleolus. Clusters of the extranucleolus nucleophosmin were also often colocalized with heterochromatin blocks. However, nonnucleolus clusters of nucleophosmin that were not associated with heterochromatin blocks were also present. The results obtained make a significant addition to the existing ideas about the structural and functional organization of the nucleus of the cerebellar granule cells.

Keywords:

granule cells cerebellum nucleophosmin (B23 protein) H4K20me3 histone nucleolus hete-rochromatin immunohistochemistry confocal microscopy 

Notes

REFERENCES

  1. 1.
    Abbott, R.D., Nelson, J.S., Ross, G.W., Uyehara-Lock, J.H., Tanner, C.M., Masaki, K.H., Launer, L.J., White, L.R., and Petrovitch, H., Marinesco bodies and substantia nigra neuron density in Parkinson’s disease, Neuropathol. Appl. Neurobiol., 2017, vol. 43, pp. 621–630.CrossRefGoogle Scholar
  2. 2.
    Beach, T.G., Walker, D.G., Sue, L.I., Newell, A., Adler, C.C., and Joyce, J.N., Substantia nigra Marinesco bodies are associated with decreased striatal expression of dopaminergic markers, J. Neuropathol. Exp. Neurol., 2004, vol. 63, pp. 329–337.CrossRefGoogle Scholar
  3. 3.
    Borgen, E., Naume, B., Nesland, J.M., Kvalheim, G., Beiske, K., Fodstad, Ø., Diel, I., Solomayer, E.-F., Theocharous, P., Coombes, R.C., Smith, B.M., Wunder, E., Marolleau, J.-P., Garcia, J., and Pantel, K., Standardization of the immunocytochemical detection of cancer cells in BM and blood: I. Establishment of objective criteria for the evaluation of immunostained cells, Cytotherapy, 1999, vol. 1, pp. 377–388.CrossRefGoogle Scholar
  4. 4.
    Feric, M., Vaidya, N., Harmon, T.S., Mitrea, D.M., Zhu, L., Richardson, T.M., Kriwacki, R.W., Pappu, R.V., and Brangwynne, C.P., Coexisting liquid phases underlie nucleolar subcompartments, Cell, 2016, vol. 165, pp. 1686–1697.CrossRefGoogle Scholar
  5. 5.
    Fišerová, J., Efenberková, M., Sieger, T., Maninová, M., Uhlířová, J., and Hozák, P., Chromatin organization at the nuclear periphery as revealed by image analysis of structured illumination microscopy data, J. Cell. Sci., 2017, vol. 130, pp. 2066–2077.CrossRefGoogle Scholar
  6. 6.
    Frehlick, L.J., Eirín-López, J.M., and Ausió, J., New insights into the nucleophosmin/nucleoplasmin family of nuclear chaperones, Bioessays, 2007, vol. 29, pp. 49–59.CrossRefGoogle Scholar
  7. 7.
    Gadad, S.S., Senapati, P., Syed, S.H., Rajan, R.E., Shandilya, J., Swaminathan, V., Chatterjee, S., Colombo, E., Dimitrov, S., Pelicci, P.G., Ranga, U., and Kundu, T.K., The multifunctional protein nucleophosmin (NPM1) is a human linker histone H1 chaperone, Biochemistry, 2011, vol. 50, pp. 2780–2789.CrossRefGoogle Scholar
  8. 8.
    Grigoriev, I.P., Korzhevskii, D.E., Sukhorukova, E.G., Gusel’nikova, V.V., and Kirik, O.V., Intranuclear ubiquitin-immunopositive structures in human substantia nigra neurons, Cell Tissue Biol., 2016, vol. 10, pp. 29–36.CrossRefGoogle Scholar
  9. 9.
    Jørgensen, S., Schotta, G., and Sørensen, C.S., Histone H4 lysine 20 methylation: key player in epigenetic regulation of genomic integrity, Nucleic Acids Res., 2013, vol. 41, pp. 2797–2806.CrossRefGoogle Scholar
  10. 10.
    Klein, A.P., Ulmer, J.L., Quinet, S.A., Mathews, V., and Mark, L.P., Nonmotor functions of the cerebellum: an introduction, Am. J. Neuroradiol., 2016, vol. 37, pp. 1005–1009.CrossRefGoogle Scholar
  11. 11.
    Kolbe, K., Bukhari, H., Loosse, C., Leonhardt, G., Glotzbach, A., Pawlas, M., Hess K., Theiss, C., and Müller, T., Extensive nuclear sphere generation in the human Alzheimer’s brain, Neurobiol. Aging, 2016, vol. 48, pp. 103–113.CrossRefGoogle Scholar
  12. 12.
    Korzhevskii, D.E., Sukhorukova, E.G., Kirik, O.V., and Grigirev, I.P., Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehude, Eur. J. Histochem., 2015, vol. 59, pp. 233–237.CrossRefGoogle Scholar
  13. 13.
    Korzhevskii, D.E., Gusel’nikova, V.V., Kirik, O.V., Sukhorukova, E.G., and Grigorev I.P., The spatial organization of the intranuclear structures of human brain dopaminergic neurons, Acta Naturae, 2017, vol. 9, pp. 20–27.Google Scholar
  14. 14.
    Kotova, E.S., Akopov, S.B., Sverdlov, E.D., and Nikolaev, L., Transcription factor CTCF and mammalian genome organization, Biopolym. Cell, 2014, vol. 30, pp. 260–272.CrossRefGoogle Scholar
  15. 15.
    Kuranova, M.L., Pleskach, N.M., Ledashcheva, T.A., Mikhelson, V.M., and Spivak, I.M., Mosaic forms of ataxia telangiectasia, Cell Tissue Biol., 2015, vol. 9, no. 1, pp. 53–63.CrossRefGoogle Scholar
  16. 16.
    Lafarga, M., Berciano, M.T., Hervas, J.P., and Villegas, J., Nucleolar organization in granule cell neurons of the rat cerebellum, J. Neurocytol., 1989, vol. 18, pp. 19–26.CrossRefGoogle Scholar
  17. 17.
    Lindström, M.S., NPM1/B23: a multifunctional chaperone in ribosome biogenesis and chromatin remodeling, Biochem. Res. Int., 2011, vol. 2011, p. 195209.CrossRefGoogle Scholar
  18. 18.
    Okuwaki, M., Matsumoto, K., Tsujimoto, M., and Nagata, K., Function of nucleophosmin/B23, a nucleolar acidic protein, as a histone chaperone, FEBS Lett., 2001, vol. 506, pp. 272–276.CrossRefGoogle Scholar
  19. 19.
    Pfister, J.A. and D’Mello, S.R., Insights into the regulation of neuronal viability by nucleophosmin/B23, Exp. Biol. Med. (Maywood), 2015, vol. 240, pp. 774–786.CrossRefGoogle Scholar
  20. 20.
    Popa, L.S., Hewitt, A.L., and Ebner, T.J., The cerebellum for jocks and nerds alike, Front. Syst. Neurosci., 2014, vol. 8, pp. 1–13.CrossRefGoogle Scholar
  21. 21.
    Sarna, J.R. and Hawkes, R., Patterned Purkinje cell death in the cerebellum, Prog. Neurobiol., 2003, vol. 70, pp. 473–507.CrossRefGoogle Scholar
  22. 22.
    Schotta, G., Lachner, M., Sarma, K., Ebert, A., Sengupta, R., Reuter, G., Reinberg, D., and Jenuwein, T., A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin, Genes Dev., 2004, vol. 18, pp. 1251–1262.CrossRefGoogle Scholar
  23. 23.
    Strick, P.L., Dum, R.P., and Fiez, J.A., Cerebellum and nonmotor function, Annu. Rev. Neurosci., 2009, vol. 32, pp. 413–434.CrossRefGoogle Scholar
  24. 24.
    Woulfe, J.M., Abnormalities of the nucleus and nuclear inclusions in neurodegenerative disease: a work in progress, Neuropathol. Appl. Neurobiol., 2007, vol. 33, pp. 2–42.Google Scholar
  25. 25.
    Woulfe, J., Nuclear bodies in neurodegenerative disease, Biochim. Biophys. Acta, 2008, vol. 1783, pp. 2195–2206.CrossRefGoogle Scholar
  26. 26.
    Yusufzai, T.M., Tagami, H., Nakatani, Y., and Felsenfeld, G., CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species, Mol. Cell., 2004, vol. 13, pp. 291–298.CrossRefGoogle Scholar
  27. 27.
    Zenit-Zhuravleva, E.G., Polkovnichenko, E.M., Lushnikova, A.A., Treshchalina, E.M., Bukaeva, I.A., and Raikhlin, N.T., Nucleophosmin and nucleolin: encoding genes and expression in various human and animal tissues, Mol. Med., 2012, vol. 4, pp. 24–31.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. M. Pleshakova
    • 1
    • 2
    Email author
  • V. V. Guselnikova
    • 1
  • D. A. Sufiyeva
    • 1
  • D. E. Korzhevsky
    • 1
  1. 1.Institute of Experimental MedicineSt. PetersburgRussia
  2. 2.Department of Medical Physics, Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations