Cell and Tissue Biology

, Volume 12, Issue 6, pp 448–454 | Cite as

The Effect of TCR-Activation and β-Estradiol on the Maturation and Differentiation of CD45RA+ T cells in vitro

  • O. G. Khaziakhmatova
  • K. A. Yurova
  • N. M. Todosenko
  • L. S. LitvinovaEmail author


Cellular and molecular aspects of maturation and differentiation of TCR-activated naive (CD3+CD45RA+CD62L+) T cells exposed to different concentrations of the female sex hormone β-estradiol in vitro were monitored. CD3+CD45RA+CD62L+ T cells were obtained from a fraction of blood mononuclear cells of healthy donors using immunomagnetic separation. The immunophenotype of T lymphocytes was analyzed by flow cytofluorometry. The polymerase chain reaction defined the level of U2af1l4 and Gfi1 gene expression in CD3+CD45RA+CD62L+ T cells. It was found that altered U2af1l4, Gfi1 gene expression produced by β-estradiol affected the maturation and differentiation of CD45RA+CD62L+ T lymphocytes. The cells underwent phenotypic conversion characterized by increased numbers of CD45RO+-T lymphocytes and reduced in content of T cells with molecules of activation and costimulation (CD127 and CD28) on the membrane surface.


β-estradiol naive T lymphocytes alternative splicing activation differentiation 



  1. 1.
    Altemus, M., Dhabhar, F.S., and Yang, R., Immune function in PTSD, Ann. N. Y. Acad. Sci., 2006, vol. 1071, pp. 167–183.CrossRefGoogle Scholar
  2. 2.
    Ayroldi, E., Macchiarulo, A., and Riccardi, C., Targeting glucocorticoid side effects: selective glucocorticoid receptor modulator or glucocorticoid-induced leucine zipper? A perspective, FASEB J., 2014, vol. 28, pp. 5055–5070.CrossRefGoogle Scholar
  3. 3.
    Bel, S. and Hooper, L.V., Immunology: a bacterial nudge to T-cell function, Nature, 2015, vol. 526, pp. 328–330.CrossRefGoogle Scholar
  4. 4.
    Butte, J.M., Lee, J.S., Jesneck, J.Keir, M.E., Haining, W.N., and Sharpe, A.H., CD28 costimulation regulates genome-wide effects on alternative splicing, PLoS One, 2012, vol. 7, no. 6. e40032.CrossRefGoogle Scholar
  5. 5.
    Cheng, Q., Morand, E., and Yang, Y.H., Development of novel treatment strategies for inflammatory diseases- similarities and divergence between glucocorticoids and GILZ, Front. Pharmacol., 2014, vol. 5, p. 169. doi 10.3389/fphar.2014.00169CrossRefGoogle Scholar
  6. 6.
    Finlay-Schultz, J. and Sartorius, C.A., Steroid hormones, steroid receptors, and breast cancer stem cells, J. Mammary Gland. Biol. Neoplasia, 2015, vol. 20, pp. 39–50.CrossRefGoogle Scholar
  7. 7.
    Furman, D., Sexual dimorphism in immunity: improving our understanding of vaccine immune responses in men, Expert Rev. Vaccines, 2015, vol. 14, pp. 461–471.CrossRefGoogle Scholar
  8. 8.
    Furman, D., Hejblum, B.P., Simon, N., Jojic, V., Dekker, C.L., Thiébaut, R., Tibshirani, R.J., and Davis, M.M., Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, pp. 869–874.CrossRefGoogle Scholar
  9. 9.
    Giefing-Kröll, C., Berger, P., Lepperdinger, G., and Grubeck-Loebenstein, B., How sex and age affect immune responses, susceptibility to infections, and response to vaccination, Aging Cell, 2015, vol. 14, pp. 309–321.CrossRefGoogle Scholar
  10. 10.
    Gruver-Yates, A.L. and Cidlowski, J.A., Tissue-specific actions of glucocorticoids on apoptosis: a double- edged sword, Cells, 2013, vol. 2, pp. 202–223.CrossRefGoogle Scholar
  11. 11.
    Gutsol, A.A., Sohonevich, N.A., and Litvinova, L.S., Effect of dexamethasone on the activation of memory T cells and naive T lymphocytes, Vestn. Ural. Med. Akad. Nauki, 2012, vol. 4, no. 41, p. 29.Google Scholar
  12. 12.
    Harris, N., Immunology: chronic effects of acute infections, Nature, 2015, vol. 526, pp. 509–510.CrossRefGoogle Scholar
  13. 13.
    Heyd, F. and Lynch, W.K., Phosphorylation-dependent regulation of PSF by GSK3 controls CD45 alternative splicing, Mol. Cell, 2010, vol. 40, pp. 126–137.CrossRefGoogle Scholar
  14. 14.
    Heyd, F., ten Dam, G., and Möröy, T., Auxiliary splice factor U2AF26 and transcription factor Gfi1 cooperate directly in regulating CD45 alternative splicing, Nat. Immunol., 2006, vol. 7, pp. 859–867.CrossRefGoogle Scholar
  15. 15.
    Khaziakhmatova, O.G., The role of steroid hormones in the differentiation of T-lymphocytes: molecular genetic and immuno-morphological aspects, Extended Abstract of Cand. Sci. Dissertation, Tomsk, 2016.Google Scholar
  16. 16.
    Kudryavtsev, I.V., T-cell memory: the main population and the stages of differentiation, Russ. Immunol. Zh., 2014, vol. 8, no. 4–17, pp. 947–964.Google Scholar
  17. 17.
    Laffont, S., Rouquié, N., Azar, P., Seillet, C., Plumas, J., Aspord, C., and Guéry, J.C., X-chromosome complement and estrogen receptor signaling independently contribute to the enhanced TLR7-mediated IFN-alpha production of plasmacytoid dendritic cells from women, J. Immunol., 2014, vol. 193, pp. 5444–5452.CrossRefGoogle Scholar
  18. 18.
    Lai, J.J., Lai, K.P., Zeng, W., Chuang, K.H., Altuwaijri, S., and Chang, C., Androgen receptor influences on body defense system via modulation of innate and adaptive immune systems: lessons from conditional AR knockout mice, Am. J. Pathol., 2012, vol. 181, pp. 1504–1512.CrossRefGoogle Scholar
  19. 19.
    Litvinova, L.S., Seledtsov, V.I., Shupletsova, V.V., Gutsol, A.A., and Anishchenko, Ye.S., Steroid regulation of immune memory, Vestn. Balt. Fed. Univ. im. I. Kanta, 2011, vol. 1, pp. 77–87.Google Scholar
  20. 20.
    Litvinova, L.S., Mazunin, I.O., Gutsol, A.A., Sokhonevich, N.A., Khaziakhmatova, O.G., and Kofanova, K.A., Dose-response effect of steroid hormones on Gfi1 and U2af1l4 gene expression in T lymphocytes at different stages of differentiation, Mol. Biol. (Moscow), 2013a, vol. 47, no. 4, pp. 572–580.CrossRefGoogle Scholar
  21. 21.
    Litvinova, L.S., Sokhonevich, N.A., Gutsol, A.A., and Kofanova, K.A., The influence of immunoregulatory cytokines IL-2, IL-7, and IL-15 upon activation, proliferation, and apoptosis of immune memory T-cells in vitro, Cell Tissue Biol., 2013b, vol. 7, no. 6, pp. 539–544.CrossRefGoogle Scholar
  22. 22.
    Litvinova, L.S., Gutsol, A.A., Sohonevich, N.A., Shupletsova, V.V., Kofanova, K.A., Kaygorodova, E.V., and Goncharov, A.G., The main surface markers of the functional activity of T-lymphocytes, Med. Immunol., 2014, vol. 6, no. 1, pp. 7–26.CrossRefGoogle Scholar
  23. 23.
    McNeill, L., Salmond, R.J., Cooper, J.C., Carret, C.K., Cassady-Cain, R.L., Roche-Molina, M., Tandon, P., Holmes, N., and Alexander, D.R., The differential regulation of Lck kinase phosphorylation sites by CD45 is critical for T cell receptor signaling responses, Immunity, 2007, vol. 27, pp. 425–437.CrossRefGoogle Scholar
  24. 24.
    Motta-Mena, B.L., Heyd, F., and Lynch, W.K., Context-dependent regulatory mechanism of the splicing factor HnRNP L, Mol. Cell, 2010, vol. 37, pp. 223–234.CrossRefGoogle Scholar
  25. 25.
    Park, J.H., Yu, Q., Erman, B., Appelbaum, J.S., Montoya-Durango, D., Grimes, H.L., and Singer, A., Suppression of IL7Ralpha transcription by IL-7 and other prosurvival cytokines: a novel mechanism for maximizing IL-7-dependent T cell survival, Immunity, 2004, vol. 21, pp. 289–302.CrossRefGoogle Scholar
  26. 26.
    Peterson, M.P., Rosvall, K.A., Choi, J.H., Ziegenfus, C., Tang, H., Colbourne, J.K., and Ketterson, E.D., Testosterone affects neural gene expression differently in male and female juncos: a role for hormones in mediating sexual dimorphism and conflict, PLoS One, 2013, vol. 8, no. 4. e61784.CrossRefGoogle Scholar
  27. 27.
    Pfaffl, M.W., A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Res., 2001, vol. 29. e45.CrossRefGoogle Scholar
  28. 28.
    Priyanka, H.P., Krishnan, H.C., Singh, R.V., Hima, L., and Thyagarajan, S., Estrogen modulates in vitro T cell responses in a concentration- and receptor-dependent manner: effects on intracellular molecular targets and antioxidant enzymes, Mol. Immunol., 2013, vol. 56, pp. 328–339.CrossRefGoogle Scholar
  29. 29.
    Surh, C.D. and Sprent, J., Homeostasis of naive and memory T cells, Immunity, 2008, vol. 29, pp. 848–862.CrossRefGoogle Scholar
  30. 30.
    Todosenko, N.M., Koroleva, Yu.A., Khaziahmatova, O.G., Yurova, K.A., and Litvinova, L.S., Genomic and non-genomic effects of glucocorticoids, Geny Kletki, 2017, vol. 12, no. 1, pp. 27–33.Google Scholar
  31. 31.
    Van Mens, S.P., Meijvis, S.C., Grutters, J.C., Vlaminckx, B.J.M., Bos, W.J.W., and Rijkersa, G.T., Dexamethasone treatment has no effect on the formation of pneumococcal antibodies during community-acquired pneumonia, Clin. Vaccine Immunol., 2012, vol. 19, pp. 811–813.CrossRefGoogle Scholar
  32. 32.
    Wieckowski, E.U., Visus, C., Szajnik, M., Szczepanski, M.J., Storkus, W.J., and Whiteside, T.L., Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes, J. Immunol., 2009, vol. 183, pp. 3720–3730.CrossRefGoogle Scholar
  33. 33.
    Wu, Z., Yates, A.L., Hoyne, G.F., and Goodnow, C.C., Consequences of increased CD45RA and RC isoforms for TCR signaling and peripheral T cell deficiency resulting from heterogeneous nuclear ribonucleoprotein L-like mutation, J. Immunol., 2010, vol. 185, pp. 231–238.CrossRefGoogle Scholar
  34. 34.
    Yurova, K.A., The role of cytokines with common receptor γ chain (IL-2, IL-7, IL-15) in regulating the mechanisms of molecular genetic control of T cell differentiation, Extended Abstract of Cand. Sci. Dissertation, Tomsk, 2015.Google Scholar
  35. 35.
    Zhao, S., Zhu, W., Xue, S., and Han, D., Testicular defense systems: immune privilege and innate immunity, Cell Mol. Immunol., 2014, vol. 11, pp. 428–437.CrossRefGoogle Scholar
  36. 36.
    Zilbernagl, S. and Despopoulos, A., Naglyadnaya fiziologiya (IIlusrative Physiology), Moscow: Binom. Laboratoriya Znanii, 2013.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. G. Khaziakhmatova
    • 1
  • K. A. Yurova
    • 1
  • N. M. Todosenko
    • 1
  • L. S. Litvinova
    • 1
    Email author
  1. 1.Basic Laboratory of Immunology and Cell Biotechnologies, Immanuel Kant Baltic Federal UniversityKaliningradRussia

Personalised recommendations