Journal of Applied and Industrial Mathematics

, Volume 13, Issue 2, pp 372–383 | Cite as

A Numerical Model of Inflammation Dynamics in the Core of Myocardial Infarction

  • O. F. VoropaevaEmail author
  • Ch. A. TsgoevEmail author


Mathematical simulation is carried out of the dynamics of an acute inflammatory process in the central zone of necrotic myocardial damage. Some mathematical model of the dynamics of the monocyte-macrophages and cytokines is presented and the numerical algorithm is developed for solving an inverse coefficient problem for a stiff nonlinear system of ordinary differential equations (ODEs). The methodological studies showed that the solution obtained by the genetic BGA algorithm agrees well with the solutions obtained by the gradient and ravine methods. Adequacy of the simulation results is confirmed by their qualitative and quantitative agreement with the laboratory data on the dynamics of inflammatory process in the case of infarction in the left ventricle of the heart of a mouse.


myocardial infarction mathematical simulation direct and inverse problems genetic algorithm necrosis inflammation M1 and M2 macrophages cytokine IL-1 IL-10 TNF-α 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Thygesen, J. S. Alpert, and H. D. White, “Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. Universal Definition of Myocardial Infarction,” European Heart J. 28, 2525–2538 (2007).CrossRefGoogle Scholar
  2. 2.
    T. Baron, K. Hambraeus, J. Sundström, D. Erlinge, T. Jernberg, and B. Lindahl, “Type 2 Myocardial Infarction in Clinical Practice,” Heart 101 (2), 101–106 (2015).CrossRefGoogle Scholar
  3. 3.
    L. M. Nepomnyashchikh, E. L. Lushnikova, and D. E. Semenov, Regenerative-Plastic Heart Failure: Morphological Basics and Molecular Mechanisms (Izd. Ross. Akad. Med. Nauk, Moscow, 2003) [in Russian].Google Scholar
  4. 4.
    S. Frantz and M. Nahrendorf, “Cardiac Macrophages and Their Role in Ischemic Heart Disease,” Cardiovascular Res. 102, 240–248 (2014).CrossRefGoogle Scholar
  5. 5.
    A. A. Yarilin, Immunology (GEOTAR-Media, Moscow, 2010) [in Russian].Google Scholar
  6. 6.
    C. Troidl et al., “Classically and Alternatively Activated Macrophages Contribute to Tissue Remodelling after Myocardial Infarction,” J. Cell. Mol. Med. 13 (9B), 3485–3496 (2009).CrossRefGoogle Scholar
  7. 7.
    A. Gombozhapova et al., “Macrophage Activation and Polarization in Post-Infarction Cardiac Remodeling,” J. Biomedical Sci. 24 (13), 11 (2017).Google Scholar
  8. 8.
    T. Anzai, “Post-Infarction Inflammation and Left Ventricular Remodeling,” Circulation J. 77, 580–587 (2013).CrossRefGoogle Scholar
  9. 9.
    F. Yang et al., “Myocardial Infarction and Cardiac Remodelling in Mice,” Exp. Physiology. 87 (5), 547–555 (2002).CrossRefGoogle Scholar
  10. 10.
    A. Saxena, W. Chen, Y. Su, V. Rai, O. U. Uche, N. Li, and N. G. Frangogiannis, “IL-1 Induces Proinflammatory Leukocyte Infiltration and Regulates Fibroblast Phenotype in the Infarcted Myocardium,” J. Immunol. 191, 4838–4848 (2013).CrossRefGoogle Scholar
  11. 11.
    O. F. Voropaeva and Yu. I. Shokin, “Numerical Modeling in Medicine: Statements of Some Problems and Computational results,” Vychisl. Tekhnol. 17 (4), 29–55 (2012).Google Scholar
  12. 12.
    R. L. Winslow, S. Cortassa, B. O’Rourke, Y. L. Hashambhoy, J. J. Rice, and J. L. Greenstein, “Integrative Modeling of the Cardiac Ventricular Myocyte,” WIREs Syst. Biol. Med. 3, 392–413 (2011).CrossRefGoogle Scholar
  13. 13.
    L. C. Lee, G. S. Kassab, and J. M. Guccione, “Mathematical Modeling of Cardiac Growth and Remodeling,” WIREs Syst. Biol. Med. 8, 211–226 (2016).CrossRefGoogle Scholar
  14. 14.
    V. E. Shlyakhover, N. I. Yabluchanskii, S. V. Eremenko, and V. A. Zabolotskii, “Mathematical Model of Cardiac Wall Strength in Zone of Myocardial Infarction for Different Conditions of Cicatrization of It,” Krovoobrashchenie 21 (4), 3–6 (1988).Google Scholar
  15. 15.
    O. M. Belotserkovskii, Application of Mathematical Approaches and Computers in Medicine in Computational Mechanics. Modern Problems and Results (Nauka, Moscow, 1991), pp. 148–172.Google Scholar
  16. 16.
    O. M. Belotserkovskii, et al., “Prediction of Clinical Outcome of Myocardial Infarction,” Dokl. Akad. Nauk SSSR 261 (6), 1307–1310 (1981).MathSciNetGoogle Scholar
  17. 17.
    O. M. Belotserkovskii, et al., “Mathematical Analysis of Regularity of Clinical Course of Myocardial Infarction,” in Problems of Cybernetics. Application of Mathematical Approach and Computer Techniques in Cardiology and Surgery (VINITI, Moscow, 1983), pp. 3–15.Google Scholar
  18. 18.
    O. M. Belotserkovskii, A. V. Vinogradov, and A. S. Glazunov, “Mathematical Modeling of Myocardial Infarction Epigenetics,” in Problems of Cybernetics. Bioinformatics and Its Applications (VINITI, Moscow, 1988), pp. 3–22.Google Scholar
  19. 19.
    O. M. Belotserkovskii, A. V. Vinogradov, and A. S. Glazunov, “Method of Early Prediction of Acute Myocardial Infarction and Postinfarction Cardiosclerosis,” in Informatics and Medicine (Nauka, Moscow, 1997), pp. 72–119.Google Scholar
  20. 20.
    L. Y. D. Crapts, Modeling an Angiogenesis Treatment after a Myocardial Infarction. Master of Science Thesis. (Delft Technical Univ., Delft, 2012).Google Scholar
  21. 21.
    E. Berberoglu and S. Goktepe, “Computational Modeling of Myocardial Infarction,” Procedia IUTAM 12, 52–61 (2015).CrossRefGoogle Scholar
  22. 22.
    J. Lin et al., “Age-Related Cardiac Muscle Sarcopenia: Combining Experimental and Mathematical Modeling to Identify Mechanisms,” Exp. Gerontol. 43, 296–306 (2008).CrossRefGoogle Scholar
  23. 23.
    Y.-F. Jin et al., “Combining Experimental and Mathematical Modeling to Reveal Mechanisms of Macrophage-Dependent Left Ventricular Remodeling,” BMC Systems Biology 5 (60), 14 (2011).Google Scholar
  24. 24.
    Y. Wang, Y. Jin, Y. Ma, G. Halade, and M. Linsey, “Mathematical Modeling of Macrophage Activation in Left Ventricular Remodeling Post-Myocardial Infarction,” in 2011 IEEE International Workshop on Genomic Signal Processing and Statistics, December 4–6, 2011 (San Antonio, 2011), pp. 202–205.Google Scholar
  25. 25.
    Y. Wang et al., “Mathematical Modeling and Stability Analysis of Macrophage Activation in Left Ventricular Remodeling Post-Myocardial Infarction,” BMC Genomics 13 (21) 8 (2012).Google Scholar
  26. 26.
    O. F. Voropaeva, N. D. Plotnikov, and Ch. A. Tsgoev, “Numerical Simulation of Cell Death During Ischemia,” in Proceedings of International Conference “Modern Problems of Mathematics, Informatics, and Mechanics,” Voronezh, September 12–15, 2016 (Nauchno-Issledov. Publ., Voronezh, 2016), pp. 221–223.Google Scholar
  27. 27.
    N. D. Plotnikov, Ch. A. Tsgoev, and O. F. Voropaeva, “Mathematical Modeling of Cell Death Processes in a Living Organism,” in Proceedings of International Conference ‘Marchuk Scientific Readings—2017,’ Novosibirsk, June 25–July 14, 2017 (Inst. Vychisl. Mat. Mat. Geofiz., Novosibirsk, 2017), pp. 697–704.Google Scholar
  28. 28.
    I. Sallaberger et al., “The Design of Francis Turbine Runners by 3D Euler Simulations Coupled to a Breeder Genetic Algorithm,” in Proceedings of 20 IAHR Symposium on Hydraulic Machinery and Systems, August 6–9, Charlotte, 2000 (2000), p. 10.Google Scholar
  29. 29.
    S. G. Cherny, D. V. Chirkov, V. N. Lapin, V. A. Skorospelov, and S. V. Sharov, Numerical Modeling of Flows in Turbomachines (Nauka, Novosibirsk, 2006) [in Russian].zbMATHGoogle Scholar
  30. 30.
    Yu. I. Neimark, Mathematical Modeling as Science and as Art (Izd. Nizhegorod. Gos. Univ., Nizhni Novgorod, 2010) [in Russian].Google Scholar
  31. 31.
    E. Oran and J. Boris, Numerical Modeling of Reacting Flows (Mir, Moscow, 1990) [in Russian].Google Scholar
  32. 32.
    L. Lyung, System Identification. The Theory for a User (Nauka, Moscow, 1991) [in Russian].Google Scholar
  33. 33.
    H. Miao, X. Xia, A.-S. Perelson, and H. Wu, “On Identifiability of Nonlinear ODE models and Applications in Viral Dynamics,” SIAM Rev. Soc. Ind. Appl. Math. 53 (1), 3–39 (2011).MathSciNetzbMATHGoogle Scholar
  34. 34.
    S. I. Kabanikhin, D. A. Voronov, A. A. Grozd’, and O.I. Krivirot’ko, “Possibility of Identification of Mathematical Models of Medical Biology,” Vavilov. Zh. Genetiki i Selektsii 19 (6), 738–744 (2015).Google Scholar
  35. 35.
    S. I. Kabanikhin, A. I. Il’in, and O. I. Krivirot’ko, “On Parameter Definition of the Models Describing by Systems of Nonlinear Differential Equations,” Sibir. Elektr. Mat. Izv. 11, 62–76 (2014).Google Scholar
  36. 36.
    I. M. Gel’fand and M. L. Tsetlin, “On Some Methods of Control for Complex Systems,” Uspekhi Mat. Nauk 17 (1), 3–25 (1962).MathSciNetzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Computational TechnologiesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations