Journal of Applied and Industrial Mathematics

, Volume 13, Issue 2, pp 363–371 | Cite as

Selectivity of Electromagnetic Influence on the Oscillations of a Heavy Conductive Liquid in a Channel

  • A. K. TomilinEmail author
  • N. F. KurilskayaEmail author


Under consideration is the MHD problem of oscillations of a heavy conductive liquid inside a channel with vertical walls in presence of an external horizontal electromagnetic field. We show that the standing surface waves are not damped in the case of symmetric position (with respect to the mid-channel) of the segment affected by a magnetic force. In the case of nonsymmetric position of the active segment, the magnetic force acts selectively on different standing waves. The selectivity condition for each standing wave depends on the width and position of the active segment. We obtain the general conditions for the absence of electromagnetic influence and inspect various special cases.


magnetohydrodynamics oscillations of liquid electromagnetic force 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. A. Glukhikh, A. V. Tananaev, and I. R. Kirillov, Magnetic Hydrodynamics in Nuclear Power (Energoatomizdat, Moscow, 1987) [in Russian].Google Scholar
  2. 2.
    K. D. Danov and M. S. Ruderman, “Nonlinear Waves on Shallow Water in the Presence of a Horizontal Magnetic Field,” Izv. Akad. Nauk SSSR. Mekh. Zhidk. Gaza No. 5, 110–115 (1983) [Fluid Dynamics 18 (5), 751–756 (1983)].Google Scholar
  3. 3.
    M. Hofman, “Nonlinear Waves on Free Surface of an Electrically Conducting Liquid,” Wave Motion 5 (2), 115–124 (1983).CrossRefzbMATHGoogle Scholar
  4. 4.
    Yu. N. Gordeev and V. V. Murzenko, “Wave Flows of a Conductive Viscous Fluid Film in a Transverse Magnetic Field,” Prikl. Mat. Tekhn. Fiz. No. 3, 96–100 (1990) [J. Appl. Mech. Techn. Phys. 31 (3), 431–435 (1990)].Google Scholar
  5. 5.
    A. I. Zadorozhnyi and R. A. Gruntfest, “Natural Oscillations of a Liquid of Finite Electrical Conductivity in the Presence of an External Magnetic Field,” Prikl. Mat. Tekhn. Fiz. 41 (2), 3–10 (2000) [J. Appl. Mech. Techn. Phys. 41 (2), 205–211 (2000)].zbMATHGoogle Scholar
  6. 6.
    A. K. Tomilin, Oscillations of Electromechanical Systems with Distributed Parameters (Vost.-Kazakh. Tekhn. Univ. (VKGTU), Ust’-Kamenogorsk, 2004) [in Russian].Google Scholar
  7. 7.
    A. K. Tomilin and N. F. Kurilskaya, “Vibrations of a Conductive String in a Nonstationary Magnetic Field under Presence of Two Nonlinear Factors,” Sibir. Zh. Industr. Mat. 20 (4), 61–66 (2017) [J. Appl. Indust. Math. 11 (4), 600–604 (2017)].zbMATHGoogle Scholar
  8. 8.
    N. N. Moiseev and V. V. Rumyantsev, Dynamics of a Body with Cavities Containing a Liquid (Nauka, Moscow, 1965) [in Russian].Google Scholar
  9. 9.
    G. G. Branover and A. B. Tsinober, Magnetic Hydrodynamics of Incompressible Media (Nauka, Moscow, 1970) [in Russian].Google Scholar
  10. 10.
    I. I. Novikov, Applied Magnetic Hydrodynamics (Atomizdat, Moscow, 1969) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Tomsk State Polytechnic UniversityTomskRussia
  2. 2.Novosibirsk State University of Architecture and Civil Engineering (SibStrIn)NovosibirskRussia

Personalised recommendations