Journal of Applied and Industrial Mathematics

, Volume 13, Issue 2, pp 350–362 | Cite as

Global Solvability of a System of Equations of One-Dimensional Motion of a Viscous Fluid in a Deformable Viscous Porous Medium

  • M. A. TokarevaEmail author
  • A. A. PapinEmail author


The mathematical statement is given for the problem of filtration of a viscous fluid in a deformable porous medium that possesses predominantly viscous properties. Some theorems are proved on local solvability and existence of a global-in-time solution in the Hölder classes for the problem.


Darcy law poroelasticity filtration global solvability uniqueness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bear, D. Zaslavsky, and S. Irmay, Physical Principles of Water Percolation and Seepage (UNESCO, Paris, 1968; Mir, Moscow, 1971).Google Scholar
  2. 2.
    J. A. D. Connolly and Y. Y. Podladchikov, “Compaction-Driven Fluid Flow in Viscoelastic Rock,” Geodin. Acta. 11, 55–84 (1998).CrossRefGoogle Scholar
  3. 3.
    G. I. Barenblatt, V. M. Entov, and V. M. Ryzhik, Movement of Fluids and Gases in Natural Formations (Nedra, Moscow, 1984) [in Russian].Google Scholar
  4. 4.
    A. Fowler, Mathematical Geoscience (Springer, London, 1982).zbMATHGoogle Scholar
  5. 5.
    A. C. Fowler and X. Yang, “Pressure Solution and Viscous Compaction in Sedimentary Basins,” J. Geophys. Res. 104, 12989–12997 (1999).CrossRefGoogle Scholar
  6. 6.
    M. Simpson, M. Spiegelman, and M. I. Weinstein, “Degenerate Dispersive Equations Arising in the Study of Magma Dynamics,” Nonlinearity 20 (1), 21–49 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    M. A. Tokareva, “Localization of Solutions of the Equations of Filtration in a Poroelastic Medium,” J. Siberian Federal Univ. Math. & Phys. 8 (4), 467–477 (2015).MathSciNetCrossRefGoogle Scholar
  8. 8.
    M. A. Tokareva, “Solvability of Initial Boundary Value Problem for the Equations of Filtration in Poroelastic Media,” J. Physics: Conf. Ser. 722 (1), 012037 (2016).MathSciNetGoogle Scholar
  9. 9.
    A. S. Saad, B. Saad, and M. Saad, “Numerical Study of Compositional Compressible Degenerate Two-Phase Flow In Saturated-Unsaturated Heterogeneous Porous Media,” Comput. Math. Appl. 71 (2), 565–584 (2016).MathSciNetCrossRefGoogle Scholar
  10. 10.
    K. Terzaghi, TheoreticalSoilMechanics (John Wiley, New York, 1943).Google Scholar
  11. 11.
    C. Morency, R. S. Huismans, C. Beaumont, and P. Fullsack, “A Numerical Model for Coupled Fluid Flow and Matrix Deformation with Applications to Disequilibrium Compaction and Delta Stability,” J. Geophys. Res. 112, B10407 (2007); doi CrossRefGoogle Scholar
  12. 12.
    J. Bear, Dynamics of Fluids in Porous Media (Elsevier, New York, 1972).zbMATHGoogle Scholar
  13. 13.
    S. N. Antontsev, A. V. Kazhikhov, and V. N. Monakhov, Boundary Value Problems in Mechanics of Inhomogeneous Fluids (Nauka, Novosibirsk, 1983) [in Russian].zbMATHGoogle Scholar
  14. 14.
    A. A. Papin and I. G. Akhmerova, “Solvability of the System of Equations of One-Dimensional Motion of a Heat-Conducting Two-Phase Mixture,” Math. Notes 87 (2), 230–243 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Equations of Elliptic Type (Nauka, Moscow, 1973) [in Russian].zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Altai State UniversityBarnaulRussia

Personalised recommendations