Advertisement

Journal of Applied and Industrial Mathematics

, Volume 13, Issue 2, pp 270–279 | Cite as

Flow Regimes in a Flat Elastic Channel in Presence of a Local Change of Wall Stiffness

  • V. Yu. LiapidevskiiEmail author
  • A. K. KheEmail author
  • A. A. ChesnokovEmail author
Article
  • 3 Downloads

Abstract

Some mathematical model is proposed of a flow in a long channel with compliant walls. This model allows us to describe both stationary and nonstationary (self-oscillatory) regimes of motion. The model is based on a two-layer representation of the flow with mass exchange between the layers. Stationary solutions are constructed and their structure is under study. We perform the numerical simulation of various flow regimes in presence of a local change of the wall stiffness. In particular, the solutions are constructed that describe the formation of a monotonic pseudoshock and the development of nonstationary self-oscillations.

Keywords

shallow water equations pseudoshock self-oscillations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. J. Pedley, The Fluid Mechanics of Large Blood Vessels (Cambridge University Press, Cambridge, 1980; Mir, Moscow, 1983).CrossRefzbMATHGoogle Scholar
  2. 2.
    M. Heil and O. E. Jensen, “Flows in Deformable Tubes and Channels: Theoretical Models and Biological Applications,” in Flow Past Highly Compliant Boundaries and in Collapsible Tubes (Springer, Heidelberg, 2003), pp. 15–49.CrossRefGoogle Scholar
  3. 3.
    L. Formaggia, D. Lamponi, and A. Quarteroni, “One-Dimensional Models for Blood Flow in Arteries,” J. Engrg. Math. 47, 251–276 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    A. H. Shapiro, “Steady Flow in Collapsible Tubes,” J. Biomech. Engrg. 99 (3), 126–147 (1977).CrossRefGoogle Scholar
  5. 5.
    C. Cancelli and T. J. Pedley, “A Separated-Flow Model for Collapsible Tube Oscillations,” J. Fluid Mech. 157, 375–404 (1985).CrossRefGoogle Scholar
  6. 6.
    B. S. Brook, S. A. E. G. Falle, and T. J. Pedley, “Numerical Solutions for Unsteady Gravity-Driven Flows in Collapsible Tubes: Evolution and Roll-Wave Instability of a Steady State,” J. Fluid Mech. 396, 223–256 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    A. A. Chesnokov and V. Yu. Liapidevskii, “Roll Wave Structure in Long Tubes with Compliant Walls,” Trudy Mat. Inst. Steklov. 300, 205–215 (2018) [Proc. Steklov Inst. Math. 300, 196–205 (2018)].MathSciNetzbMATHGoogle Scholar
  8. 8.
    V. Yu. Liapidevskii and A. A. Chesnokov, “Mixing Layer under a Free Surface,” Prikl. Mekh. Tekhn. Fiz. 55 (2), 127–140 (2014) [J. Appl. Mech. Techn. Phys. 55 (2), 299–310 (2014)].MathSciNetzbMATHGoogle Scholar
  9. 9.
    I. I. Lipatov, V. Yu. Liapidevskii, and A. A. Chesnokov, “An Unsteady Pseudoshock Model for Barotropic Gas Flow,” Dokl. Akad. Nauk 466 (5), 545–549 (2016) [Dokl. Phys. 61 (2), 82–86 (2016)].MathSciNetGoogle Scholar
  10. 10.
    V. Yu. Liapidevskii and V. M. Teshukov, Mathematical Models of Long Waves Propagation in Inhomogeneous Liquid (Izd. Sibir. Otdel. Ross. Akad. Nauk, Novosibirsk, 2000) [in Russian].Google Scholar
  11. 11.
    A. A. Chesnokov, “Axisymmetric Vortex Fluid Flow in a Long Elastic Tube,” Prikl. Mekh. Tekhn. Fiz. 42 (4), 76–87 (2001) [J. Appl. Mech. Techn. Phys. 42 (4), 628–637 (2001)].MathSciNetzbMATHGoogle Scholar
  12. 12.
    V. M. Teshukov, “Gas-Dynamic Analogy for Vortex Free-Boundary Flows,” Prikl. Mekh. Tekhn. Fiz. 48 (3), 8–15 (2007) [J. Appl. Mech. Techn. Phys. 48 (3), 628–637 (2007)].MathSciNetzbMATHGoogle Scholar
  13. 13.
    A. A. Townsend, The Structure of Turbulent Shear Flow (Univ. Press, Cambridge, 1956).zbMATHGoogle Scholar
  14. 14.
    P. Bradshaw, D. H. Ferriss, and N. P. Atwell, “Calculation of Boundary-Layer Development Using the Turbulent Energy Equation,” J. Fluid Mech. 28, 593–616 (1967).CrossRefGoogle Scholar
  15. 15.
    H. Nessyahu and E. Tadmor, “Nonoscillatory Central Differencing Schemes for Hyperbolic Conservation Laws,” J. Comp. Phys. 87, 408–463 (1990).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Lavrent’ev Institute of HydrodynamicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations