Journal of Applied and Industrial Mathematics

, Volume 13, Issue 2, pp 239–249 | Cite as

A Local Search Algorithm for the Single Machine Scheduling Problem with Setups and a Storage

  • P. A. KononovaEmail author
  • Yu. A. KochetovEmail author


We present a new mathematical model for a single machine scheduling problem originated from the tile industry. The model takes into account the sequence-dependent setup times, the minimal batch size, heterogeneous orders of customers, and a stock in storage. As the objective function we use the penalty for tardiness of the customers’ orders and the total storage cost for final products. A mixed-integer linear programming model is applied for small test instances. For real-world applications, we design a randomized tabu search algorithm. The computational results for some test instances from a Novorossiysk company are discussed.


tabu search scheduling due date tardiness setup time 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. R. Jackson, “Scheduling a Production Line to Minimize Maximum Tardiness,” Research Report No. 43 (Univ. Calif., Los Angeles, 1955).Google Scholar
  2. 2.
    W. E. Smith, “Various Optimizers for Single-Stage Production,” Naval Res. Logist. Quart. 3 (1–2), 59–66 (1956).MathSciNetCrossRefGoogle Scholar
  3. 3.
    L.-P. Bigras, M. Gamache, and G. Savard, “The Time-Dependent Traveling Salesman Problem and Single Machine Scheduling Problems with Sequence Dependent Setup Times,” Discrete Optim. 5 (4), 685–699 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    A. Allahverdi, “The Third Comprehensive Survey on Scheduling Problems with Setup Times/Costs,” European J. Oper. Res. 246 (2), 345–378 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    B. Chen, C. N. Potts, and G. J. Woeginger, “A Review of Machine Scheduling: Complexity, Algorithms, and Approximability,” in Handbook of Combinatorial Optimization, Vol. 3 (Kluwer Acad. Publ., Dordrecht, 1998), pp. 21–169.Google Scholar
  6. 6.
    Y. Pochet and L. A. Wolsey, Production Planning by Mixed Integer Programming (Springer, New York, 2006).zbMATHGoogle Scholar
  7. 7.
    A. Dolgui, A. V. Eremeev, M. Ya. Kovalyov, and P. M. Kuznetsov, “Multi-Product Lot Sizing and Scheduling on Unrelated Parallel Machines,” IIE Trans. 42 (7), 514–524 (2010).CrossRefGoogle Scholar
  8. 8.
    S. L. Janak, Ch. A. Floudas, J. Kallrath, and N. Vormbrock, “Production Scheduling of a Large-Scale Industrial Batch Plant. I. Short-Term and Medium-Term Scheduling,” Indust. Eng. Chem. Res. 45, 8234–8252 (2006).CrossRefGoogle Scholar
  9. 9.
    P. Brucker, Scheduling Algorithms (Springer, Heidelberg, 1982).zbMATHGoogle Scholar
  10. 10.
    E.-G. Talbi, Metaheuristics: From Design to Implementation (Wiley, Hoboken, NJ, 2009).CrossRefzbMATHGoogle Scholar
  11. 11.
    N. Mladenović, J. Brimberg, P. Hansen, and J. A. Moreno-Pérez, “The p-Median Problem: A Survey of Metaheuristic Approaches,” European J. Oper. Res. 179 (3), 927–939 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    A. I. Erzin, N. Mladenović, and R. V. Plotnikov, “Variable Neighborhood Search Variants for Min-Power Symmetric Connectivity Problem,” Comput. Oper. Res. 78, 557–563 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    A. I. Erzin and R. V. Plotnikov, “Using VNS for the Optimal Synthesis of the Communication Tree in Wireless Sensor Networks,” Electron. Notes Discrete Math. 47, 21–28 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Yu. A. Kochetov, A. A. Panin, and A. V. Plyasunov, “Genetic Local Search and Hardness of Approximation for the Server Load Balancing Problem,” Avtom. Telemekh. No. 3, 51–62 (2017) [Autom. Remote Control 78 (3), 425–434 (2017)].Google Scholar
  15. 15.
    Yu. A. Kochetov and A. A. Kondakov, “VNS Matheuristic for a Bin Packing Problem with a Color Constraint,” Electron. Notes Discrete Math. 58, 39–46 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    S. M. Lavlinskii, A. A. Panin, and A. V. Plyasunov, “A Bilevel Planning Model for Public-Private Partnership,” Avtom. Telemekh. No. 11, 89–103 (2015) [Autom. Remote Control 76 (11), 1976–1987 (2015)].Google Scholar
  17. 17.
    A. A. Panin, M. G. Pashchenko, and A. V. Plyasunov, “Bilevel Competitive Facility Location and Pricing Problems,” Avtom. Telemekh. No. 4, 153–169 (2014) [Autom. Remote Control 75 (4), 715–727 (2014)].Google Scholar
  18. 18.
    S. Iellamo, E. V. Alekseeva, L. Chen, M. Coupechoux, and Yu. A. Kochetov, “Competitive Location in Cognitive Radio Networks,” 4OR 13 (1), 81–110 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    I. A. Davydov, P. A. Kononova, and Yu. A. Kochetov, “Local Search with an Exponential Neighborhood for the Servers Load Balancing Problem,” Diskretn. Anal. Issled. Oper. 21 (6), 21–34 (2014) [J. Appl. Indust. Math. 9 (1), 27–35 (2015)].zbMATHGoogle Scholar
  20. 20.
    I. A. Davydov, A. A. Melnikov, and P. A. Kononova, “Local Search for Load Balancing Problems for Servers with Large Dimension,” Avtom. Telemekh. No. 3, 34–50 (2017) [Autom. Remote Control 78 (3), 412–424 (2017)].Google Scholar
  21. 21.
    E. H. L. Aarts, J. H. M. Korst, and P. J. M. van Laarhoven, “Simulated Annealing,” in Local Search in Combinatorial Optimization (Wiley, Chichester, 1997), pp. 91–120.Google Scholar
  22. 22.
    J. Brimberg, P. Hansen, and N. Mladenović, “Attraction Probabilities in Variable Neighborhood Search,” 4OR 8 (2), 181–194 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Yu. A. Kochetov, “Facility Location: Discrete Models and Local Search Methods,” in Combinatorial Optimization: Methods and Applications (IOS Press, Amsterdam, 2011), pp. 97–134.Google Scholar
  24. 24.
    B. H. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms (Springer, Heidelberg, 1982).zbMATHGoogle Scholar
  25. 25.
    F. Glover and M. Laguna, Tabu Search (Kluwer Acad. Publ., Norwell, MA: 1997).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations