Journal of Applied and Industrial Mathematics

, Volume 13, Issue 2, pp 185–193 | Cite as

On the Conditions for Existence of Unidirectional Motions of Binary Mixtures in the Oberbeck—Boussinesq Model

  • V. K. AndreevEmail author
  • I. V. StepanovaEmail author


Compatibility conditions are obtained for the nonstationary Oberbeck—Boussinesq equations describing the unidirectional motions of a liquid binary mixture in a horizontal strip. We examine the case of polynomial dependence of temperature on the longitudinal coordinate is considered, and the influence of the dependence of the kind on the remaining unknown functions from the original system. It is shown that a nonstationary unidirectional motion between two solid walls can be described by the Oberbeck—Boussinesq model only for the quadratic or linear law of temperature distribution along the horizontal coordinate. Some initial-boundary value problems are posed.


Oberbeck—Boussinesq equations binary mixture unidirectional motion compatibility conditions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Z. Gershuni, E. M. Zhukhovetskii, and A.A. Nepomnyashchii, Stability of Convective Flows (Nauka, Moscow, 1989) [in Russian].Google Scholar
  2. 2.
    V. K. Andreev, A Birikh Solution to the Convection Equations and Some Generalization of It, Preprint No. 1–10 (Inst. Vychisl. Mat. Model. Sibir. Otdel. Ross. Akad. Nauk, Krasnoyarsk, 2010).Google Scholar
  3. 3.
    V. K. Andreev, Yu. A. Gaponenko, O. N. Goncharova, and V. V. Pukhnachov, Mathematical Models of Convection (Fizmatlit, Moscow, 2008; Walter de Gruyter, Berlin, 2012).Google Scholar
  4. 4.
    I. I. Ryzhkov, Thermodiffusion in Mixtures: Equations, Symmetry, Solutions, and Stability (Izd. Sibir. Otdel. Ross. Akad. Nauk, Novosibirsk, 2013) [in Russian].Google Scholar
  5. 5.
    N. V. Gnevanov and B. L. Smorodin, “Convective Instability of a Binary Mixture Flow under Vibration and Thermodiffusion,” Prikl. Mekh. Tekhn. Fiz. 47 (2), 77–84 (2006).zbMATHGoogle Scholar
  6. 6.
    I. I. Ryzhkov and I. V. Stepanova, “Group Properties and Exact Solutions to a Model of Vibrating Convection of a Binary Mixture,” Prikl. Mekh. Tekhn. Fiz. 52 (4), 72–82 (2011).MathSciNetGoogle Scholar
  7. 7.
    V. K. Andreev and N. L. Sobachkina, A Binary Mixture Motion in Plane and Cylindrical Domains (Red.-Izd. Tsentr of Sibir. Federal. Univ., Krasnoyarsk, 2012) [in Russian].zbMATHGoogle Scholar
  8. 8.
    V. K. Andreev and I. V. Stepanova, “Ostroumov—Birikh Solution of Convection Equations with Nonlinear Buoyancy Force,” Appl. Math. Comput. 228, 59–67 (2014).MathSciNetzbMATHGoogle Scholar
  9. 9.
    V. K. Andreev and I. V. Stepanova, “Unidirectional Flow of Binary Mixtures in the Oberbeck—Boussinesq Model,” Izv. Ross. Akad. Nauk. Mekh. Zhidk. Gaza No. 2, 13–24 (2016).Google Scholar
  10. 10.
    V. V. Pukhnachev, “Nonstationary Analogs of the Birikh Solution,” Izv. Altaisk. Gos. Univ. Mat. Mekh. Nos. 1–2, 62–69 (2011).Google Scholar
  11. 11.
    M. V. Efimova and N. Darabi, “Thermoconcentration Convection in a System of Viscous Fluid and a Binary Mixture in a Plane Channel under Small Marangoni Numbers,” Prikl. Mekh. Tekhn. Fiz. 59 (5), 93–103 (2018).zbMATHGoogle Scholar
  12. 12.
    V. K. Andreev and M. V. Efimova, “Properties of Solutions for the Problem of a Joint Slow Motion of a Liquid and a Binary Mixture in a Two-Dimensional Channel,” Sibir. J. Industr. Mat. 21 (3), 3–17 (2018) [J. Appl. Indust. Math. 12 (3), 395–408 (2018)].MathSciNetzbMATHGoogle Scholar
  13. 13.
    G. A. Ostroumov, Free Convection under Conditions of Inner Problem (Gostekhizdat, Moscow, 1952) [in Russian].Google Scholar
  14. 14.
    R. V. Birikh, “On Thermocapillary Convection in a Horizontal Fluid Layer,” Prikl. Mekh. Tekhn. Fiz. No. 3, 69–72 (1966).Google Scholar
  15. 15.
    O. N. Goncharova, E. V. Rezanova, Yu. V. Lyulin, and O. A. Kabov, “Studying the Convective Flows of a Fluid and Cocurrent Gas Flow with Account for Evaporation,” Teplofiz. Vysokikh Temperatur 55 (6), 720–732 (2017).Google Scholar
  16. 16.
    V. B. Bekezhanova and O. N. Goncharova, “Stability of the Exact Solutions Describing the Two-Layer Flows with Evaporation at Interface,” Fluid Dynam. Res. 48 (6), 061408. (2016).MathSciNetCrossRefGoogle Scholar
  17. 17.
    V. B. Bekezhanova, O. N. Goncharova, E. V. Rezanova, and I. A. Shefer, “Stability of Two-Layered Fluid Flows with Evaporation at the Interface,” Izv. Ross. Akad. Nauk. Mekh. Zhidk. Gaza No. 3, 23–35 (2017).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Computational ModelingKrasnoyarskRussia
  2. 2.Institute of Mathematics and Fundamental InformaticsSiberian Federal UniversityKrasnoyarskRussia

Personalised recommendations