Advertisement

Galaxy Clusters and Their Outskirts: the “Red Sequence”, Star Formation Rate, Stellar Mass

  • 9 Accesses

Abstract

We study the nearest outskirts (R < 3R200c) of 40 groups and clusters of galaxies of the local Universe (0.02 < z < 0.045 and 300 km s-1 < σ < 950 km s-1). Using the SDSS DR10 catalog data, we determined the stellar mass of galaxy clusters corresponding to Ks-luminosity (which we determined earlier based on the 2MASX catalog data) (M*/M) ∝ (LK/L⊙)1.010±0.004 (MK < - 21m.5, R < R200c). We also found the dependence of the galaxy cluster stellar mass on halo mass: (M*/M) ∝ (M200c/M)0.77±0.01. Our results show that the fraction of galaxies with quenched star formation (MK < -21m) is maximal in the central regions of the galaxy clusters and equals, on the average, 0.81 ± 0.02; it decreases to 0.44 ± 0.02 outside of the projected radius Rsp (2 < R/R200c < 3), which we found from the observed profile, but still remains higher than that in the field by 27%. The fraction of early-type “red sequence” galaxies decreases from 0.54 ± 0.02 in the center to 0.24 ± 0.01 beyond Rsp, reaching its field value.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. 1.

    A. Dressler, Astrophys. J. 236, 351 (1980).

  2. 2.

    M. L. Balogh, I. K. Baldry, R. Nichol, et al., Astrophys. J. 615, L101 (2004).

  3. 3.

    G. Kauffmann, C. D. M. White, T.M. Heckman, et al., Monthly Notices Royal Astron. Soc. 353, 713 (2004).

  4. 4.

    S. Mahajan, G. A. Mamon, and S. Raychaudhury, Monthly Notices Royal Astron. Soc. 418, 2816 (2011).

  5. 5.

    J. D. Hernádez-Fernádez, J. D. Haines, A. Diaferio, et al., Monthly Notices Royal Astron. Soc. 438, 2186 (2014).

  6. 6.

    A. Muzzin, R. F. J. van den Burg, S. L. McGee, et al., Astrophys. J. 796, 65 (2014).

  7. 7.

    K. A. Oman, M. J. Hudson, and P. S. Behroozi, Monthly Notices Royal Astron. Soc. 431, 2307 (2013).

  8. 8.

    K. A. Oman and M. J. Hudson, Monthly Notices Royal Astron. Soc. 463, 3083 (2016).

  9. 9.

    J. Rhee, R. Smith, H. Choi, et al., arXiv:1704.04243 (2017).

  10. 10.

    M. L. Balogh, S. L. Morris, H. K. C. Yee, et al., Astrophys. J. 527, 54 (1999).

  11. 11.

    M. L. Balogh, J. F. Navarro, and S. L. Morris, Astrophys. J. 540, 113 (2000).

  12. 12.

    C. P. Haines, M. J. Pereira, G. P. Smith, et al., Astrophys. J. 775, 126 (2015).

  13. 13.

    A. R. Wetzel, J. L. Tinker, and C. Conroy, Monthly Notices Royal Astron. Soc. 424, 232 (2012).

  14. 14.

    S. P. D. Gill, A. Knebe, and B. K. Gibson, Monthly Notices Royal Astron. Soc. 356, 1327 (2005).

  15. 15.

    B. R. McNamara and P. E. J. Nulsen, Annual Rev. Astron. Astrophys. 45, 117 (2007).

  16. 16.

    K. Bekki, W. J. Couch, and Y. Shioya, Astrophys. J. 577, 651 (2002).

  17. 17.

    J. E. Gunn and J. R. I. Gott, Astrophys. J. 176, 1 (1972).

  18. 18.

    V. Quilis, B. Moore, and R. Bower, Science 288, 1617 (2000).

  19. 19.

    A. I. Zabludoff and J. S. Mulchaey, Astrophys. J. 496, 39 (1998).

  20. 20.

    D. Olave-Rojas, P. Cerulo, R. Demarco, et al., arXiv:1806.08435 (2018).

  21. 21.

    F. G. Kopylova and A. I. Kopylov, Astrophysical Bulletin 70, 123 (2015).

  22. 22.

    F. G. Kopylova and A. I. Kopylov, Astrophysical Bulletin 73, 267 (2018).

  23. 23.

    C. P. Ahn, R. Alexandroff, C. Allende Prieto, et al., Astrophys. J. Suppl. 211, 17 (2014).

  24. 24.

    T. H. Jarrett, T. Chester, R. Cutri, et al., Astrophys. J. 119, 455 (1997).

  25. 25.

    F. G. Kopylova, Astrophysical Bulletin 68, 253 (2013).

  26. 26.

    F. G. Kopylova and A. I. Kopylov, Astronomy Letters 39, 3 (2013).

  27. 27.

    A. I. Kopylov and F. G. Kopylova, Astrophysical Bulletin 70, 243 (2015).

  28. 28.

    G. A. Mamon, T. Sanchis, E. Salvador-Sole, and M.J. Solanes, Astron. and Astrophys. 414, 445 (2004).

  29. 29.

    V. R. Eke, S. Cole, and C. S. Frenk, Monthly Notices Royal Astron. Soc. 282, 263 (1996).

  30. 30.

    S. More, B. Diemer, and A. V. Kravtsov, Astrophys. J. 810, 36 (2015).

  31. 31.

    B. Tully, Astron. J. 149, 54 (2015).

  32. 32.

    S. More, H. Miyatake, M. Takada, et al., Astrophys. J. 825, 39 (2016).

  33. 33.

    C. Chang, E. Baxter, B. Jain, et al., Astrophys. J. 864, 83 (2018).

  34. 34.

    A. Raichoor and S. Andreon Astron. and Astrophys. 570, A123 (2014).

  35. 35.

    M. D. Gladders, O. Lopez-Cruz, H. K. C. Yee, and T. Kodama, Astrophys. J. 501, 571 (1998).

  36. 36.

    B. Garilli, D. Bottini, D. Maccagni, et al., Astro-phys. J. Suppl. 105, 191 (1996).

  37. 37.

    M. Scodeggio, Astron. J. 121, 2413 (2001).

  38. 38.

    O. Lò pez-Cruz, W. A. Barkhouse, and H. K. C. Yee, Astrophys. J. 614, 679 (2004).

  39. 39.

    A. Aragon-Salamanca, R. S. Ellis, and R. M. Sharples, Monthly Notices Royal Astron. Soc. 248, 128 (1991).

  40. 40.

    S. A. Stanford, P. R. M. Eisenhardt, and M. Dickinson, Astrophys. J. 492, 461 (1998).

  41. 41.

    P. G. van Dokkum, M. Franx, D. Fabricant, et al., Astrophys. J. 541, 95 (2000).

  42. 42.

    J. P. Blakeslee, Astrophys. J. 596L, 143 (2003).

  43. 43.

    S. Andreon and M. Huertas-Company, Astron. and Astrophys. 526, A11 (2011).

  44. 44.

    G. A. Mamon, A. Biviano, and G. Murante, Astron. and Astrophys. 520, A30 (2010).

  45. 45.

    S. Barsanti, M. S. Owers, S. Brough, et al., arXiv:1803.05076 (2018).

  46. 46.

    C. Conroy, J. E. Gunn, and M. White, Astrophys. J. 699, 486 (2009).

  47. 47.

    M. Bernardi, A. Meert, R.K. Sheth, et al., Monthly Notices Royal Astron. Soc. 436, 697 (2013).

  48. 48.

    Y.-T. Lin, J. J. Mohr, and S. A. Stanford, Astrophys. J. 610, 745 (2004).

  49. 49.

    M. Ramella, W. Boschin, M. Geller, et al., Astron. J. 128, 2022 (2004).

  50. 50.

    M. A. Strauss, D. H. Weinberg, R. H. Lupton, et al., Astron. J. 124, 1810 (2002).

  51. 51.

    R. Feldmann, Monthly Notices Royal Astron. Soc. 470, L59 (2017).

  52. 52.

    A. R. Wetzel, J. L. Tinker, C. Conroy, et al., Monthly Notices Royal Astron. Soc. 439, 2687 (2014).

Download references

Acknowledgments

This research has made use of the NASA/IPAC Extragalactic Database (NED, http://nedwww.ipac.caltech.edu), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration, Sloan Digital Sky Survey (SDSS, http://www.sdss.org), which is supported by Alfred P. Sloan Foundation, the participant institutes of the SDSS collaboration, National Science Foundation, and the United States Department of Energy and Two Micron All Sky Survey (2MASS, http://www.ipac.caltech.edu/2mass/releases/allsky/).

Author information

Correspondence to F. G. Kopylova.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Russian Text © The Author(s), 2019, published in Astrofizicheskii Byulleten', 2019, Vol. 74, No. 4, pp. 374–387.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kopylova, F.G., Kopylov, A.I. Galaxy Clusters and Their Outskirts: the “Red Sequence”, Star Formation Rate, Stellar Mass. Astrophys. Bull. 74, 365–378 (2019). https://doi.org/10.1134/S1990341319040035

Download citation

Keywords

  • galaxies
  • clusters-galaxies
  • star formation-galaxies
  • evolution