Advertisement

Astrophysical Bulletin

, Volume 74, Issue 3, pp 257–269 | Cite as

The Distance to the Giant Elliptical Galaxy M87 and the Size of Its Stellar Subsystem

  • N. A. TikhonovEmail author
  • O. A. Galazutdinova
  • G. M. Karataeva
Article

Abstract

Stellar photometry in nine fields around the giant elliptical galaxy M87 in the Virgo cluster is obtained from archival images of the Hubble Space Telescope. The resulting Hertzsprung-Russell diagrams show populated red-giant and AGB branches. The position of the tip the red-giant branch (the TRGB discontinuity) is found to vary with galactocentric distance. This variation can be interpreted as the effect of metal-rich red giants on the procedure of the measurement of the TRGB discontinuity or as a consequence of the existence of a weak gas-and-dust cloud around M87 extending out to 10’ along the galactocentric radius and causing I-band absorption of up to \(0\mathop .\limits^{\rm{m}} 2\) near the center of the galaxy. The TRGB stars located far fromtheM87 center yield an average distancemodulus of (m-M) = 30.91 ± 0.08, which corresponds to the distance of D = 15.4± 0.6Mpc. It is shown that stars in the field located between M86 and M87 galaxies at angular separations of 37’ and 40’ are not intergalactic stars, but belong to the M87 galaxy, i.e., that the stellar halo of this galaxy can be clearly seen at a galactocentric distance of 190 kpc. The distances are measured to four dwarf galaxies P4anon, NGC4486A, VCCA039, and dSph-D07, whose images can be seen in the fields studied. The first three galaxies are M87 satellites, whereas dSph-D07 is located at a greater distance and is a member of the M86 group.

Key words

galaxies clusters individual Virgo-galaxies individual M87 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding

T.N.A. acknowledges the support from the Russian Foundation for Basic Research (project no. 14-50-00043) during the preparation of this paper.

References

  1. 1.
    C. S. Rudick, J. C. Mihos, and C. McBride, Astrophys. J. 648, 936 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    N. A. Tikhonov, Astronomy Letters 43, 21 (2017).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    B. F. Williams, R. Ciardullo, P. R. Durrell, et al., Astrophys. J. 656, 756 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    J. C. Mihos, P. Harding, J. Feldmeier, and H. Morrison, Astrophys. J. 631, L41 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    J. C. Mihos, P. Harding, J. J. Feldmeier, et al., Astrophys. J. 834, 16 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    S. Janowiecki, J. C. Mihos, P. Harding, et al., Astrophys. J. 715, 972 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    N. Caldwell, Astrophys. J. 651, 822 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    M. G. Lee, W. L. Freedman, and B. F. Madore, Astrophys. J. 417, 553 (1993).ADSCrossRefGoogle Scholar
  9. 9.
    A. Dolphin, “DOLPHOT: Stellar photometry,” (2016).Google Scholar
  10. 10.
    P. B. Stetson, Publ. Astron. Soc. Pacific 99, 191 (1987).ADSCrossRefGoogle Scholar
  11. 11.
    P. B. Stetson, Publ. Astron. Soc. Pacific 106, 250 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    N. A. Tikhonov, O. A. Galazutdinova, and E. N. Tikhonov, Astronomy Letters 35, 599 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    N. A. Tikhonov and O. A. Galazutdinova, Astronomy Letters 35 748 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    E. F. Schlafly and D. P. Finkbeiner, Astrophys. J. 737, 103 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    S. Bird, W. E. Harris, J. P. Blakeslee, and C. Flynn, Astron. and Astrophys. 524, A71 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    M. Montes, I. Trujillo, M. A. Prieto, and J. A. Acosta-Pulido, Monthly Notices Royal Astron. Soc. 439, 990 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    N. A. Tikhonov, O. A. Galazutdinova, and I.O. Drozdovsky, Astron. and Astrophys. 431, 127 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    C. S. Rudick, J. C. Mihos, P. Harding, et al., Astrophys. J. 720, 569 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    M. Rejkuba, W. E. Harris, L. Greggio, et al., Astrophys. J. 791, L2 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    R. A. Ibata, G. F. Lewis, A. W. McConnachie, et al., Astrophys. J. 780, 128 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    J. C. Mihos, P. Harding, C. S. Rudick, and J. J. Feldmeier, Astrophys. J. 764, L20 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    J. Kormendy, D. B. Fisher, M. E. Cornell, and R. Bender, Astrophys. J. Suppl. 182, 216 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    L. J. Oldham and M. W. Auger, Monthly Notices Royal Astron. Soc. 457, 421 (2016).ADSCrossRefGoogle Scholar
  24. 24.
    H. C. Ferguson, N. R. Tanvir, and T. von Hippel, Nature 391, 461 (1998).ADSCrossRefGoogle Scholar
  25. 25.
    P. R. Durrell, R. Ciardullo, J. J. Feldmeier, et al., Astrophys. J. 570, 119 (2002).ADSCrossRefGoogle Scholar
  26. 26.
    M. Arnaboldi, J. A. L. Aguerri, N. R. Napolitano, et al., Astron. J. 123, 760 (2002).ADSCrossRefGoogle Scholar
  27. 27.
    J. C. Mihos, S. Janowiecki, J. J. Feldmeier, et al., Astrophys. J. 698, 1879 (2009).ADSCrossRefGoogle Scholar
  28. 28.
    A. Longobardi, M. Arnaboldi, O. Gerhard, and R. Hanuschik, Astron. and Astrophys. 579, A135 (2015).ADSCrossRefGoogle Scholar
  29. 29.
    B. F. Williams, R. Ciardullo, P. R. Durrell, et al., Astrophys. J. 654, 835 (2007).ADSCrossRefGoogle Scholar
  30. 30.
    Y. Ko, H. S. Hwang, M. G. Lee, et al., Astrophys. J. 835, 212 (2017).ADSCrossRefGoogle Scholar
  31. 31.
    M. M. Shara, T. F. Doyle, T. R. Lauer, et al., Astrophys. J. Suppl. 227, 1 (2016).ADSCrossRefGoogle Scholar
  32. 32.
    M. M. Shara, T. Doyle, T. R. Lauer, et al., Astrophys. J. 839, 109 (2017).ADSCrossRefGoogle Scholar
  33. 33.
    M. G. Lee and I. S. Jang, Astrophys. J. 819, 77 (2016).ADSCrossRefGoogle Scholar
  34. 34.
    L. Ferrarese, J. R. Mould, R. C. Kennicutt, Jr., et al., Astrophys. J. 529, 745 (2000).ADSCrossRefGoogle Scholar
  35. 35.
    M. G. Lee and I. S. Jang, Astrophys. J. 822, 70 (2016).ADSCrossRefGoogle Scholar
  36. 36.
    B. F. Madore and W. L. Freedman, Astron. J. 109, 1645 (1995).ADSCrossRefGoogle Scholar
  37. 37.
    P. Fouqué, J. M. Solanes, T. Sanchis, and C. Balkowski, Astron. and Astrophys. 375, 770 (2001).ADSCrossRefGoogle Scholar
  38. 38.
    P. R. Durrell, B. F. Williams, R. Ciardullo, et al., Astrophys. J. 656, 746 (2007).ADSCrossRefGoogle Scholar
  39. 39.
    I. S. Jang and M. G. Lee, Astrophys. J. 795, L6 (2014).ADSCrossRefGoogle Scholar
  40. 40.
    A. Longobardi, M. Arnaboldi, O. Gerhard, et al., Astron. and Astrophys. 558, A42 (2013).CrossRefGoogle Scholar
  41. 41.
    E. H. Neilsen, Jr. and Z. I. Tsvetanov, Astrophys. J. 536, 255 (2000).ADSCrossRefGoogle Scholar
  42. 42.
    J. M. Solanes, T. Sanchis, E. Salvador-Solé, et al., Astron. J. 124, 2440 (2002).ADSCrossRefGoogle Scholar
  43. 43.
    S. Mei, J. P. Blakeslee, P. Côté, et al., Astrophys. J. 655, 144 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. A. Tikhonov
    • 1
    Email author
  • O. A. Galazutdinova
    • 1
  • G. M. Karataeva
    • 2
  1. 1.Special Astrophysical ObservatoryRussian Academy of SciencesNizhnii ArkhyzRussia
  2. 2.Astronomical InstituteSt. Petersburg State UniversityPetrodvoretsRussia

Personalised recommendations