Advertisement

Russian Journal of Pacific Geology

, Volume 13, Issue 4, pp 320–340 | Cite as

Sources of Sediment Clasts and Depositional Environment of the Upper Paleozoic Shazagaitui and Zhipkhoshi Formations of the Chiron Basin, Eastern Transbaikalia

  • L. I. PopekoEmail author
  • Yu. N. Smirnova
  • V. A. ZaikaEmail author
  • A. A. Sorokin
Article
  • 4 Downloads

Abstract

The article presents the results of comprehensive geological and geochemical study of the sedimentary rocks of the Upper Paleozoic Shazagaitui and Zhipkhoshi formations filling the upper part of the Chiron Basin, as well as U–Pb geochronological and Lu–Hf isotopic studies of zircons from these formations. The geochemical features of the terrigenous rocks of the Shazagaitui and Zhipkhoshi formations indicate that they were formed in a subduction zone environment. The presence of conglomerates and gravelstones and the predominance of unrounded and subrounded fragments in the rocks of the Shazagaitui and Zhipkhoshi formations also indicate their sedimentation in tectonically active zones. The abundant detrital zircons of Paleoproterozoic age, as well as the Paleoproterozoic and Archean Hf model ages of most of the zircons in the sandstones of the Shazagaitui and Zhipkhoshi formations, suggest that the main source of sediment clasts for these formations are the magmatic and metamorphic rocks of the southern surrounding of the North Asian Craton. However, the presence of Devonian–Carboniferous zircons with relatively young (mostly Neoproterozoic) Hf model ages is evidence that these zircons in the sedimentation basin were derived through erosion of mature (?) island arcs, but the contribution of this source is minor. The obtained results in combination with our regional geological data from previous studies suggest that the sediments of the Shazagaitui and Zhipkhoshi formations were accumulated in a basin setting on the southern framing of the North Asian Craton facing the Paleozoic Ocean.

Keywords:

Upper Paleozoic detrital zircons sources Chiron Basin Eastern Transbaikalia 

Notes

ACKNOWLEDGMENTS

We are grateful to A.I. Khanchuk and O.R. Minina for useful discussion and constructive comments, which significantly improved the manuscript. We also thank analysts E.N. Voropaev, O.G. Medvedev, A.I. Palazhchenko, V.I. Rozhdestvin, E.S. Sapozhnik, and E.V. Ushakov (Institute of Geology and Nature Management, Far Eastern Branch, Russian Academy of Sciences), V.E. Zazulin, E.M. Golubev, and A.V. Shtarev (Kosygin Institute of Tectonics and Geophysics, Far Eastern Branch, Russian Academy of Sciences), as well as analysts from the Arizona LaserChron Center, USA, for performance of analytical stu-dies.

FUNDING

The studies were supported by the Russian Science Foundation (project no. 18-35-20004) and were carried out partially in the framework of the State Task of the Kosygin Institute of Tectonics and Geophysics of the Far Eastern Branch of the Russian Academy of Sciences (no. 075-00409-19-00, study of Permian Bryozoan).

REFERENCES

  1. 1.
    V. A. Amantov, “Tectonics and Formations of Transbaikalia and Northern Mongolia,” in Trudy VSEGEI, 231 ( Nedra, Leningrad, 1975) [in Russian].Google Scholar
  2. 2.
    K. K. Anashkina, K. S. Butin, F. I. Enikeev, A. V. Kinyakin, V. P. Krasnov, V. A. Krivenko, B. I. Oleksiv, T. A. Pinaeva, I. G. Rutshtein, V. N. Semenov, L. P. Starukhina, N. N. Chaban, and E. V. Shulika, Geological Structure of the Chita Region: Explanatory Notes to the Geological Map. 1 : 500 000 (Chita, 1997) [in Russian].Google Scholar
  3. 3.
    Atlas of Fauna and Flora of the Paleozoic–Mesozoic of the Transbaikalia, Ed. by A. V. Kurilenko, G. V. Kotlyar, N. P. Kul’kov, et al. (Nauka, Novosibirsk, 2002) [in Russian].Google Scholar
  4. 4.
    V. G. Belichenko, N. K. Geletii, and I. G. Barash, “Barguzin microcontinent (Baikal mountain area): the problem of outlining,” Russ. Geol. Geophys. 47 (10), 1035–1045 (2006).Google Scholar
  5. 5.
    I. V. Buchko, E. B. Sal’nikova, A. A. Sorokin, A. P. Sorokin, A. B. Kotov, and S. Z. Yakovleva, “First Evidence for the manifestation of Mesozoic mafic–ultramafic magmatism within the Selenga–Stanovoi Superterrane, southeastern framing of the Siberian Craton,” Dokl. Earth Sci. 405 (9), 1337–1341 (2005).Google Scholar
  6. 6.
    A. S. Byakov, “A new Permian bivalve zonal scale of Northeastern Asia. Article 2: Correlation problems,” Russ. J. Pac. Geol. 7 (1), 1–15 (2013).Google Scholar
  7. 7.
    N. I. Volkova and E. V. Sklyarov, “High-pressure complexes of Central Asian Fold Belt: geologic ssetting, geochemistry, and geodynamic implications,” Russ. Geol. Geophys. 48 (1), 109–119 (2007).Google Scholar
  8. 8.
    S. N. Gavrikova, L. L. Nikolaeva, and A. V. Galanin, Early Precambrian of the Southern Part of the Stanovoi Fold Area (Nedra, Moscow, 1991) [in Russian].Google Scholar
  9. 9.
    Geodynamics, Magmatism, and Metallogeny of East Russia, Ed. by A.I. Khanchuk (Dal’nauka, Vladivostok, 2006) [in Russian].Google Scholar
  10. 10.
    Geology of Northeastern Asia. Volume 4. Geological Evolution and General Tendencies in Metallogeny, Carbon Formation, and Oil and Gas Formation, (Nedra, Leningrad, 1973) [in Russian].Google Scholar
  11. 11.
    D. P. Gladkochub, A. M. Stanevich, A. M. Mazukabzov, T. V. Donskaya, S. A. Pisarevskii, G. Nikol’, Z. L. Motova, and T. A. Kornilova, “Early evolution of the Paleoasian ocean: LA-ICP-MS dating of detrital zircon from Late Precambrian sequences of the southern margin of the Siberian craton,” Russ. Geol. Geophys. 54 (10), 1150–1163 (2013).Google Scholar
  12. 12.
    I. V. Gordienko, “Geodynamic evolution of Late Baikalides and Paleozoids in the folded periphery of the Siberian Craton,” Russ. Geol. Geophys. 47 (1), 51–67 (2006).Google Scholar
  13. 13.
    I. V. Gordienko, A. N. Bulgatov, N. I. Lastochkin, and V. S. Sitnikova, “Composition and U-Pb isotopic age determinations (SHRIMP-II) of the ophiolitic assemblage from the Shaman Paleospreading zone and the conditions of its formation (North Transbaiklia),” Dokl. Earth Sci. 429 (2), 1420–1425 (2009).Google Scholar
  14. 14.
    I. V. Gordienko, A. N. Bulgatov, S. V. Ruzhentsev, O. R. Minina, V. S. Klimuk, L. I. Vetluzhskikh, G. E. Nekrasov, N. I. Lastochkin, V. S. Sitnikova, D. V. Metelkin, T. A. Goneger, and E. N. Lepekhina, “The Late Riphean–Paleozoic history of the Uda–Vitim island-arc system in the Transbaikalian sector of the Paleoasian ocean,” Russ. Geol. Geophys. 51 (5), 461–481 (2010).Google Scholar
  15. 15.
    I. V. Gordienko and D. V. Metelkin, “The evolution of the subduction zone magmatism on the Neoproterozoic and Early Paleozoic active margins of the Paleoasian ocean,” Russ. Geol. Geophys. 57 (1), 69–81 (2016).Google Scholar
  16. 16.
    T. V. Donskaya, E. B. Sal’nikova, E. V. Sklyarov, D. P. Gladkochub, A. M. Mazukabzov, V. P. Kovach, S. Z. Yakovleva, N. G. Berezhnaya, “Early Proterozoic postcollision magmatism at the southern flank of the Siberian Craton: new geochronological data and geodynamic implications,” Dokl. Earth Sci. 383 (2), 125–128 (2002).Google Scholar
  17. 17.
    T. V. Donskaya, D. P. Gladkochub, and V. P. Kovach, “Petrogenesis of Early Proterozoic postcollisional granitoids in the southern Siberian Craton,” Petrology 13 (3), 229–252 (2005).Google Scholar
  18. 18.
    L. P. Zonenshain, M. I. Kuz’min, and L. M. Natapov, Tectonics of Lithospheric Plates of the USSR Territory (Nedra, Moscow, 1990), Vol. 1 [in Russian].Google Scholar
  19. 19.
    M. P. Ketris, “Petrochemical characteristics of terrigenous rocks,” Ezhegodnik-1974 (VINITI, Moscow, 1976), pp. 32–38 [in Russian].Google Scholar
  20. 20.
    V. P. Kovach, E. B. Sal’nikova, E. Yu. Rytsk, V. V. Yarmolyuk, A. B. Kotov, I. V. Anisimova, S. Z. Yakovleva, A. M. Fedoseenko, Yu. V. Plotkina, “The time length of formation of the Angara–Vitim batholite: results of U–Pb geochronological studies,” Dokl. Earth Sci. 444 (1), 553–558 (2012).Google Scholar
  21. 21.
    V. N. Kozerenko, Geological Structure of the Southeastern Eastern Transbaikalia (Izd-vo L’vov. Univ., Lvov, 1956) [in Russian].Google Scholar
  22. 22.
    G. V. Kotlyar and L. I. Popeko, “Upper Paleozoic biostratigraphy, bryozoa, and brachiopods of Transbaikalia,” Zap. Zabaikal’sk. Fil. Geograf. O-va SSSR, (Chita, 1967), Vo. 28 [in Russian].Google Scholar
  23. 23.
    A. M. Larin, E. B. Sal’nikova, A. B. Kotov, L. B. Makar’ev, S. Z. Yakovleva, and V. P. Kovach, “Early Proterozoic syn- and postcollision granites in the northern part of the Baikal Fold Area,” Stratigraphy. Geol. Correlation 14 (5), 463–474 (2006).Google Scholar
  24. 24.
    A. M. Larin, A. B. Kotov, V. P. Kovach, E. B. Sal’nikova, V. V. Yarmolyuk, S. D. Velikoslavinskii, S. Z. Yakovleva, and Yu. V. Plotkina, “Rare metal granites of the Katugin Complex (Aldan Shield): sources and geodynamic formation settings,” Dokl. Earth Sci. 464 (1), 889–893 (2015).Google Scholar
  25. 25.
    A. M. Mazukabzov, T. V. Donskaya, D. P. Gladkochub, and I. P. Paderin, “The Late paleozoic geodynamics of the West Transbaikalian segment of the Central Asian Fold Belt,” Russ. Geol. Geophys. 51 (5), 482–491 (2010).Google Scholar
  26. 26.
    M. S. Nagibina, Stratigraphy and Formations of the Mongol–Okhotsk Belt (VINITI, Moscow, 1969) [in Russian].Google Scholar
  27. 27.
    G. E. Nekrasov, S. V. Ruzhentsev, S. L. Presnyakov, N. V. Rodionov, D. A. Lykhin, B. G. Golionko, “U-Pb SHRIMP dating of zircons from plutonic and metamorphic rocks of the Ikat–Bagdarin and Agin zones, Transbaikalia,” in Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent): Proceedings of Scientific Conference, (IZK SO RAN, Irkutsk, 2006), Vol. 2, pp. 58–60 [in Russian].Google Scholar
  28. 28.
    G. E. Nekrasov, N. V. Rodionov, N. G. Berezhnaya, S. A. Sergeev, S. V. Ruzhentsev, O. R. Minina, and B. G. Golionko, “U-Pb age of zircons from plagiogranite veins in migmatized amphibolites of the Shaman Range (Ikat–Bagdarin Zone, Vitim Highland, Transbaikal Region),” Dokl. Earth Sci. 413 (1), 160–163 (2007).Google Scholar
  29. 29.
    L. M. Parfenov, L. I. Popeko, and O. Tomurtogoo, “Problems of tectonics of the Mongol–Okhotsk Orogenic Belt,” Tikhookean. Geol. 18 (5), 24–43 (1999).Google Scholar
  30. 30.
    L. M. Parfenov, N. A. Berzin, A. I. Khanchuk, G. Bodarch, V. G. Belichenko, A. N. Bulgatov, S. I. Dril’, G. L. Kirillova, M. I. Kuz’min, W. J. Nokleberg, A. V. Prokop’ev, V. F. Timofeev, O. Tomurtogoo, and H. Yan’, “Model of Formation of orogenic belts of Central and Northeastern Asian,” Tikhookean. Geol. 22 (6), 7–41 (2003).Google Scholar
  31. 31.
    Pettijohn, F.J., Potter, R., and Siever, R., Sand and Sandstone (Springer, Heidelberg, 1972).Google Scholar
  32. 32.
    S. V. Ruzhentsev and G. E. Nekrasov, “Tectonics of the Aga zone, Mongolia–Okhotsk Belt,” Geotectonics, 43 (1), 34–50 (2009).Google Scholar
  33. 33.
    S. V. Ruzhentsev, O. R. Minina, G. E. Nekrasov, V. A. Aristov, B. G. Golionko, N. A. Doronina, and D. A. Lykhin, “The Baikal–Vitim Fold System: structure and geodynamic evolution,” Geotectonics 46 (2), 87–110 (2012).Google Scholar
  34. 34.
    E. Yu. Rytsk, V. P. Kovach, V. V. Yarmolyuk, V. I. Kovalenko, E. S. Bogomolov, and A. B. Kotov, “Isotopic structure and evolution of the continental crust in the East Transbaikalian segment of the Central Asian Foldbelt,” Geotectonics 45 (5), 349–377 (2011).Google Scholar
  35. 35.
    E. S. Sobolev, I. V. Budnikov, and A. G. Klets, “Late Bashkirian ammonoids and nautiloids from the Western Verkhoyansk Region,” Paleontol. J., 32 (5), 447–461 (1998).Google Scholar
  36. 36.
    A. A. Sorokin, A. V. Ponomarchuk, A. V. Travin, V. A. Ponomarchuk, K. D. Vakhtomin, “New 40Ar/39Ar age of granitic rocks and related gold mineralization at the Kirovskoye Deposit (southeastern margin of the North Asian Craton),” Dokl. Earth Sci. 458 (2), 1230−1235 (2014).Google Scholar
  37. 37.
    A. A. Sorokin, A. P. Sorokin, V. A. Ponomarchuk, and A. V. Travin, “Early Jurassic volcanics of the Uda Belt (southeastern part of the North Asian Craton): 40Ar/39Ar geochronological and geochemical data,” Dokl. Earth Sci. 460 (1), 6–10 (2015).Google Scholar
  38. 38.
    S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell Science, Oxford, 1985).Google Scholar
  39. 39.
    M. I. Tulokhonov, Geological Map of the USSR. 1 : 200 000. East Transbaikalian Series. Vostochno-Zabaikal’skaya Series. Sheet M-50-II (Gosgeoltekhizdat, Moscow, 1962) [in Russian].Google Scholar
  40. 40.
    A. A. Tsygankov, D. I. Matukov, N. G. Berezhnaya, A. N. Larionov, V. F. Posokhov, B. Ts. Tsyrenov, A. A. Khromov, and S. A. Sergeev, “Late Paleozoic granitods of the Western Transbaikalia: magma sources and stages of formation,” Russ. Geol. Geophys. 48 (1), 120—140 (2007).Google Scholar
  41. 41.
    A. A. Tsygankov, “Late Paleozoic granitoids in Western Transbaikalia: sequence of formation, sources of magmas, and geodynamics,” Russ. Geol. Geophys. 55 (2), 153–176 (2014).Google Scholar
  42. 42.
    E. A. Shivokhin, A. F. Ozerskii, A. V. Kurilenko, N. I. Raitina, and V. V. Karasev, State Geological Map of the Russian Federation. 1 : 1 000 000. Aldan–Transbaikalian Series. Sheet M-50. 3rd Generation, Ed. by V.V. Starchenko (VSEGEI, St. Petersburg, 2010) [in Russian].Google Scholar
  43. 43.
    Ya. E. Yudovich, B. Ya. Dembovskii, and M. P. Ketris, “Geochemical features of the redeposition of weathering crusts in the Ordovician sediments of the Pechora Urals,” in Ezhegodnik-1976 (Inst. Geol. Komi Fil. AN SSSR, Syktyvkar, 1977), pp. 133–142 [in Russian].Google Scholar
  44. 44.
    Yudovich, Ya.E., Regional Geochemistry of Sedimentary Sequences, (Nauka, Leningrad, 1981) [in Russian].Google Scholar
  45. 45.
    Ya. E. Yudovich and M. P. Ketris, Principles of Lithochemistry (Nauka, St. Petersburg, 2000) [in Russian].Google Scholar
  46. 46.
    Y. Amelin, D.-C. Lee, A. N. Halliday, and R. T. Pidgeon, “Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons,” Nature 399, 252–255 (1999).Google Scholar
  47. 47.
    G. Badarch, W. D. Cunningham, and B. F. Windley, “A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia,” J. Asian Earth Sci. 21 (1), 87–110 (2002).Google Scholar
  48. 48.
    H. Bahlburg and N. Dobrzinski, A Review of the Chemical Index of Alteration (CIA) and Its Application to the Study of Neoproterozoic Glacial Deposits and Climate Transitions, Geol. Soc Mem. London, 36, 81−92 (2011). Google Scholar
  49. 49.
    M. R. Bhatia, “Plate tectonics and geochemical composition of sandstones,” J. Geol. 91 (6), 611–627 (1983).Google Scholar
  50. 50.
    M. R. Bhatia and K. A. W. Crook, “Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins,” Contrib. Mineral. Petrol. 92, 181–193 (1986).Google Scholar
  51. 51.
    L. P. Black, S. L. Kamo, C. M. Allen, D. W. Davis, J. N. Aleinikoff, J. W. Valley, R. Mundil, I. H. Campbell, R. J. Korsch, I. S. Williams, and C. Foudoulis, “Improved 206Pb/238U microprobe geochronology by the monitoring of trace-element-related matrix effect: SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards,” Chem. Geol. 205, 15–140 (2004).Google Scholar
  52. 52.
    J. Blichert-Toft and F. Albarede, “The Lu-Hf geochemistry of chondrites and the evolution of the mantle–crust system,” Earth Planet. Sci. Lett. 148, 243–258 (1997).Google Scholar
  53. 53.
    D. Bussien, N. Gombojav, W. Winkler, and A. Quadt, “The Mongol–Okhotsk Belt in Mongolia—an appraisal of the geodynamic development by the study of sandstone provenance and detrital zircons,” Tectonophysics 510, 132–150 (2011).Google Scholar
  54. 54.
    G. E. Gehrels, V. Valencia, and J. Ruiz, “Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb Ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry,” Geochem., Geophys., Geosyst. 9 (3), 1–13 (2008).Google Scholar
  55. 55.
    W. L. Griffin, E. A. Belousova, S. R. Shee, and N. J. Pearson, and S. Y. O’Reilly, “Archean crustal evolution in the Northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons,” Precambrian Res. 131, 231–282 (2004).Google Scholar
  56. 56.
    X. X. Gu, “Geochemical characteristics of the triassic tethysturbidites in northwestern sichuan, china: implications for provenance and interpretation of the tectonic setting,” Geochim. Cosmochim. Acta 58, 4615–4631 (1994).Google Scholar
  57. 57.
    L. Harnois, “The CIW index: a new chemical index of weathering,” Sediment. Geol. 55 (3–4), 319–322 (1988).Google Scholar
  58. 58.
    M. M. Herron, “Geochemical classification of terrigenous sands and shales from core or log data,” J. Sediment. Petrol. 58, 820–829 (1988).Google Scholar
  59. 59.
    U. S. Jayawardena and E. Izawa, “A new chemical index of weathering for metamorphic silicate rocks in tropical regions: a study from Sri Lanka,” Engineer. Geol. 36, 303–310 (1994).Google Scholar
  60. 60.
    T. K. Kelty, A. Yin, B. Dash, et al., “Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay-Hentey Basin, North-Central Mongolia: implications for the tectonic evolution of the Mongol-Okhotsk Ocean in Central Asia,” Tectonophysics 451, 290–311 (2008).Google Scholar
  61. 61.
    A. I. Khanchuk, A. N. Didenko, L. I. Popeko, A. A. Sorokin, and B. F. Shevchenko, Structure and evolution of the Mongol–Okhotsk Orogenic Belt, The Central Asian Orogenic Belt. Geology, Evolution, Tectonics, and Models, Ed. by A. Kroner (Borntraeger Sci., Stuttgart, 2015).Google Scholar
  62. 62.
    S. B. Kroonenberg, “Effects of provenance, sorting and weathering on the geochemistry of fluvial sands from different tectonic and climatic environments,” Ed. by T. Nishiyama, G. W. Fisher, F. Kumon, K. M. Yu, Y. Watanbe, and A. Motamed, Proc. 29th Intern. Geol. Congress. Part A (VSP, Utrecht, 1994).Google Scholar
  63. 63.
    K. R. Ludwig, Isoplot 3.6, Berkley Geochronol. Center. Spec. Publ., No. 4 (2008).Google Scholar
  64. 64.
    J. M. Mattinson, “Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed system natural zircon samples,” Chem. Geol. 275, 186–198 (2010).Google Scholar
  65. 65.
    W. F. McDonough and S.-S. Sun, “The composition of the Earth,” Chem. Geol. 120 (3–4), 223–253 (1995).Google Scholar
  66. 66.
    S. M. McLennan, S. Hemming, D. K. McDanniel, and G. N. Hanson, “Geochemical approaches to sedimentation, provenance, and tectonics,” Controlling the Composition of Clastic Sediments, Ed. by M. J. Johnsson and A. Basu, Geol. Soc. Am. Spec. Pap. 285, 21–40 (1993).Google Scholar
  67. 67.
    B. N. Nath, H. Kunzendorf, and W. L. Pluger, “Influence of provenance, weathering and sedimentary processes on the elemental ratios of the fine-grained fraction of the Bedload sediments from the Vembanad Lake and the adjoining continental shelf, Southwest Coast of India,” J. Sed. Res. 70 (5), 1081–1094 (2000).Google Scholar
  68. 68.
    H. W. Nesbitt and G. M. Young, “Early Proterozoic climates and plate motions inferred from major element chemistry of lutites,” Nature 299, 715–717 (1982).Google Scholar
  69. 69.
    J. B. Paces and J. D. Miller, “Precise U-Pb ages of Duluth complex and related mafic intrusions, Northeastern Minnesota: geochronological insights to physical, petrogenic, paleomagnetic, and tectonomagmatic processes associated with the 1.1. Ga Midcontinent rift system,” J. Geophys 98 (8), 13997–14013 (1993).Google Scholar
  70. 70.
    A. Parker, “An index of weathering for silicate rocks,” Geol. Mag. 107, 501–504 (1970).Google Scholar
  71. 71.
    B. P. Roser and R. J. Korsch, “Determination of tectonic setting of sandstone–mudstone suites using SiO2 content and K2O/Na2O ratio,” J. Geol. 94 (5), 635–650 (1986).Google Scholar
  72. 72.
    B. D. Roser and R. J. Korsch, “Provenance signatures of sandstone mudstone suites determinate using discriminant function analysis of major-element data,” Chem. Geol. 67, 119–139 (1988).Google Scholar
  73. 73.
    U. Söderlund, P. J. Patchett, J. D. Vervoort, and C. E. Isachsen, “The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions,” Earth Planet. Sci. Lett. 219, 311–324 (2004).Google Scholar
  74. 74.
    J. S. Stacey and I. D. Kramers, “Approximation of terrestrial lead isotope evolution by a two-stage model,” Earth Planet Sci. Lett. 26 (2), 207–221 (1975).Google Scholar
  75. 75.
    J. D. Vervoort and P. J. Patchett, “Behavior of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites,” Geochim. Cosmochim. Acta 60, 3717–3723 (1996).Google Scholar
  76. 76.
    J. N. J. Visser and G. M. Young, “Major element geochemistry and paleoclimatology of the Permo–Carboniferous glaciogene Dwyka Formation and post-glacial mudrocks in Southern Africa,” Palaeogeogr. Palaeoclim. Palaeoecol. 81, 49–57 (1990).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Kosygin Institute of Tectonics and Geophysics, Far Eastern Branch, Russian Academy of SciencesKhabarovskRussia
  2. 2.Institute of Geology and Nature Management, Far Eastern Branch, Russian Academy of SciencesBlagoveshchenskRussia

Personalised recommendations