Russian Journal of Pacific Geology

, Volume 12, Issue 6, pp 593–603 | Cite as

Sedimentation Conditions on Floodplains of Rivers of the Khanka Plain (Southern Far East) in the Middle–Late Holocene

  • V. B. BazarovaEmail author
  • M. S. Lyashchevskaya
  • T. R. Makarova
  • L. A. Orlova


The sedimentation conditions and formation of the accumulative landscape of the Khanka Plain are reconstructed on the example of the floodplain deposits of the Mel’gunovka River. Two groups of processes are specified: soil formation (pedogenic stage) and alluvial sedimentation (lithogenic stage). It is revealed that the alternation of the lithogenic and pedogenic sedimentation stages on the floodplain mainly depended on the dynamics of climate humidity and that the temperature factor played a secondary role. The reconstructed climatic events of the second half of the Holocene correspond well to the colder and warmer periods on the GISP2 isotope curve. The correlation is the closest for the events of the Late Holocene, such as the warm periods of the 3rd–5th and 8th–10th centuries and the cold periods of the 6th and 14th–19th centuries.

Keywords: humified loam alluvial sand floodplain sedimentation pollen and spores diatom radiocarbon data warm and cold periods Middle–Late Holocene Khanka Plain Russian Far East 



This work was supported by the Far East Program, project no. 15-I-6-097.


  1. 1.
    V. B. Bazarova, L. M. Mokhova, L. A. Orlova, and P. S. Belyanin, “Variation of the Lake Khanka level in the Late Holocene, Primorye,” Russ. J. Pac. Geol. 2 (3), 272–276 (2008).Google Scholar
  2. 2.
    V. B. Bazarova, T. A. Grebennikova, and L. A. Orlova, “Environmental dynamics of the Amur Basin during the Little Ice Age,” Geogr. Prir. Res., No. 3, 126–134 (2014).Google Scholar
  3. 3.
    S. S. Barinova, L. A. Medvedeva, and O. V. Anisimova, Algae as Indicators for the Assesment of the Environmental State (VNIIprirody, Moscow, 2000) [in Russian].Google Scholar
  4. 4.
    S. S. Barinova, L. A. Medvedeva, and O. V. Anisimova, Biodiveristy of Algae—Environment Indicators (PiliesStudio, Tel’ Aviv, 2006) [in Russian].Google Scholar
  5. 5.
    N. S. Bolikhovskaya, T. N. Voskresenskaya, and M. V. Muratova, “On stratigraphy and paleogeography of Late Pleistocene amd Holocene deposoys of Primorye,” in Geohronologof the Quaternary Period (Nauka, Moscow, 1980), pp. 254–258 [in Russian].Google Scholar
  6. 6.
    V. F. Bolikhovskii, “Fossil soils and genesis of cover brown clay loam of Southern Primorye,” in Pleistocene Paleogeography of the Far East and its Seas (DVNTs AN SSSR, Vladivostok, 1978), pp. 76–80 [in Russian].Google Scholar
  7. 7.
    S. I. Genkal and N. V. Vekhov, Diatom Algae of the Russian Arctic Basins (Nauka, Moscow, 2007) [in Russian].Google Scholar
  8. 8.
    Diatom Algae of the USSR. Fossil and Modern (Nauka, Leningrad, 1974), Vol. 1 [in Russian].Google Scholar
  9. 9.
    History of Topographic Evolution of Siberia and Far East. Southern Far East, Ed. by G. I. Khudyakov, E. P. Denisov, A. M. Korotkii, , (Nauka, Moscow, 1972), p. 424 [in Russian].Google Scholar
  10. 10.
    B. P. Kolesnikov, “Vegetation,” in Southern Far East (Nauka, Moscow, 1969), pp. 206–250 [in Russian].Google Scholar
  11. 11.
    A. M. Korotkii, R. I. Nikonova, and B. P. Poda, “Conditions of formation of “brown” clay loam and clay of Primorye," in Problems in Studying the Quaternary Period (Nauka, Moscow, 1972), pp. 57–63 [in Russian].Google Scholar
  12. 12.
    A. M. Korotkii, L. P. Karaulova, and T. S. Troitskaya, Quaternary Sediments of Primorye (Nauka, Novosibirsk, 1980) [in Russian].Google Scholar
  13. 13.
    A. M. Korotkii, “Typification of lakes of the southern Far East and stages of its evolution in the Late Pleistocene–Holocene,” in History of Modern Lakes (Tallin, Leningrad, 1986), pp. 133–134 [in Russian].Google Scholar
  14. 14.
    A. M. Korotkii, T. A. Grebennikova, L. P. Karaulova, and N. I. Belyanina, " Lacustrine Transgressions in the Late Cenozoic Ussuri–Khanka Depression (Primor’e)," Russ. J. Pac. Geol. 1 (4), 352–365 (2007).Google Scholar
  15. 15.
    G. E. Kurentsova, Vegetation of the Khanka Plain and Surrounding Piedmonts (AN SSSR, Moscow, 1962) [in Russian].Google Scholar
  16. 16.
    E. I. Loseva, Atlas of the Pleistocene Fresh Water Diatoms of European Northeast (Nauka, St. Petersburg, 2000) [in Russian].Google Scholar
  17. 17.
    Yu. A. Mikishin, T. I. Petrenko, A. N. Popov, et al., “Paleogeography of Lake Khanka in the Late Holocene,” Nauch. Obozrenie, No. 2, 7–13 (2007).Google Scholar
  18. 18.
    B. I. Pavlyutkin and A. I. Khanchuk, “New data on the age of Lake Khanka, the Russian Far East,” Dokl. Earth Sci. 383, 187–189 (2002).Google Scholar
  19. 19.
    T. I. Petrenko, Yu. A. Mikishin, and N. I. Belyanina, “Subfossil spore–pollen assemblages of the Khanka Plain, Primorye,” Estestv. Tekhn. Nauki, No. 4, 162–171 (2009).Google Scholar
  20. 20.
    N. G. Razzhigaeva, L. A. Ganzei, T. A. Grebennikova, N. I. Belyanina, and L. M. Mokhova, “Manifestation of lesser Holocene optimum on the southern Far East,” Geogr. Prir. Res., No. 2, 124–131 (2014).Google Scholar
  21. 21.
    V. I. Roslikova, N. A. Rybachuk, and A. M. Korotkii, Atlas of Soils of Southern Far East (Dal’nauka, Vladivostok, 2010) [in Russian].Google Scholar
  22. 22.
    A. M. Sladkov, Introduction in Spore–Pollen Analysis (Nauka, Moscow, 1967) [in Russian].Google Scholar
  23. 23.
    S. A. Sycheva, “Rhythmicity of Sedimentation and Pedogenesis on the Middle Russian Rise in the Holocene,” Izv. RGO 135 (1), 45–57 (2003).Google Scholar
  24. 24.
    S. A. Sycheva, “Morphoplithopedogenesis in the accumulative and trans-accumulative landscapes as specific mechanism of soil–lithogenic memory,” in Soil Memory: Soil as Memory of the Biosphere–Geosphere–Anthropospheric Interactions (Moscow, 2008), pp. 128–161 [in Russian].Google Scholar
  25. 25.
    V. G. Kharitonov, “Representatives of the Fragilariaceae (Bacillariophyta) family in the Berengia basins,” Bot. Zh. 90 (112), 1693–1710 (2005).Google Scholar
  26. 26.
    N. A. Khotinskii, “Radiocarbon chronolohy and correlation of natural and anthropogenic boundaries in the Holocene,” in New Geochronological Data on the Quaternary (Nauka, Moscow, 1987), pp. 39–60 [in Russian].Google Scholar
  27. 27.
    S. A. Chumichev, “Holocene climate based on natural–scientific data and its reflection in historical chronicles: roots of system contradictions,” Anthology of Civil Studies “New Paradigm”. Vol. 1. Going to the Ecumene, 2003. Scholar
  28. 28.
    V. B. Bazarova, M. S. Lyaschevskaya, T. A. Grebennikova, and L. A. Orlova, “Late Holocene paleoclimatic events and evolution of environments in southeastern Transbaikalia,” Quater. Int. 355, 44–51 (2015).Google Scholar
  29. 29.
    P. M. Grootes, M. Stuiver, J. W. White, et al., “Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores,” Nature 366, 552–554 (1993).Google Scholar
  30. 30.
    K. Krammer and H. Lange-Bertalott, “Bacillariophyceae. Teil 1: Naviculaceae,” Suwasserflora von Mitteleuropa. Jena 2, 875 (1986).Google Scholar
  31. 31.
    K. Krammer and H. Lange-Bertalott, “Bacillariophyceae. Teil 3: Centrales; Fragilariaceae, Eunotiaceae,” Suwasserfl ora von Mitteleuropa. Stuttgart, Jena 2–3, 556 (1991).Google Scholar
  32. 32.
    B. Weninger, O. Juris, and U. Danzeglocke, “Cologne radiocarbon calibration and paleoclimate research package. CALPAL_A (Advanced),” Ghost of Edinburgh Edition, 2002 (Universal zuKuln, Institut fur Ur-und Fruhgeschichte, Radiocarbon Laboratory, Weyertal, Kuln, 2005). http://www/ quickcal.plGoogle Scholar
  33. 33.
    T. Yamamoto, “On the climatic change in the 15th and 16th centuries in Japan,” Geophys. Mag., No. 35, 187–206 (1971).Google Scholar
  34. 34.
    T. Yamamoto, “On the nature of climatic change in Japan since the Little Ice Age around 1800 AD,” J. Meteorol. Soc. Jpn., No. 49, 798–812 (1971).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. B. Bazarova
    • 1
    Email author
  • M. S. Lyashchevskaya
    • 1
  • T. R. Makarova
    • 1
  • L. A. Orlova
    • 2
  1. 1.Pacific Institute of Geography, Far East Branch, Russian Academy of SciencesVladivostokRussia
  2. 2.Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations