Advertisement

Russian Journal of Pacific Geology

, Volume 12, Issue 5, pp 429–442 | Cite as

Evaluation of P–T and fO2 Conditions of Crystallization of Monzonitic Rocks of the Velitkenay Granite–Migmatite Massif (Arctic Chukotka) Based on Mineral Thermobaro- and Oxybarometry

  • G. O. Polzunenkov
Article

Abstract

The physico-chemical parameters of crystallization of the Early Cretaceous Velitkenay granite–migmatite pluton (Arctic coast of Chukotka, near Cape Billings) are reconstructed using mineral thermobarometry and oxybarometry. The magmatic rocks are dominated by monzonitic rocks (quartz monzodiorites and monzodiorites), with less common granodiorites and leucogranites. The limitations on and critical parameters of the amphibole composition are considered for correct application of thermobarometry. The most reliable pressure estimations for the early-phase monzonitic rocks are calculated using an amphibole geobarometer range from 2.2 to 4.2 kbar. The calculated crystallization temperature varies from 684 to 823°C (plagioclase–amphibole geothermometer) at oxygen fugacity from +0.2 to +0.7 relative to NNO buffer. The obtained P–T data on the Velitkenay monzonitic rocks are consistent with the conditions of amphibolite facies metamorphism typical of the Chukotka granite–metamorphic domes, the formation of which is related to post-collisional extension.

Keywords:

mineral thermobaro- and oxybarometry monzonitic rocks Velitkenay granite–migmatite massif Chukotka Arctic 

Notes

ACKNOWLEDGMENTS

The studies were partially supported by the Russian Foundation for Basic Research (project no. 16-05-00949).

We are grateful to V.V. Akinin and M.L. Gelman for consultation and help in manuscript preparation. We are also grateful to an anonymous reviewer, whose comments significantly improved the manuscript.

REFERENCES

  1. 1.
    Yu. M. Bychkov, Structural-Facies Zoning and Biostratigraphy of Triassic, Chukotka (SVNTs DVO RAN, Magadan, 1994) [in Russian].Google Scholar
  2. 2.
    A. V. Volkov and I. A. Voronin, “Gold–quartz mineralization of the Kuul anticlinal zone, Northern Chukotka,” Kolyma, No. 1, 41–58 (1993).Google Scholar
  3. 3.
    M. L. Gel’man, “Phanerozoic granite-metamorphic domes on Northeast Siberia. Paper 1. geological history of the Paleozoic and Mesozoic domes,” Tikhookean. Geol. 14 (4), 102–115 (1995).Google Scholar
  4. 4.
    M. L. Gel’man, “Phanerozoic granite-metamorphic domes on Northeast Siberia. Paper 2. Magmatism, metamorphism, and migmatization in the Late Mesozoic domes,” Tikhookean. Geol. 15 (1), 84–93 (1996).Google Scholar
  5. 5.
    Geodynamics, Magmatism, and Metallogeny of East Russia, Ed. by A. I. Khanchuk (Dal’nauka, Vladivostok, 2006) [in Russian].Google Scholar
  6. 6.
    D. V. Dudkinskii, S. V. Efremov, and V. D. Kozlov, “Geochemical features of Mesozoic granitoids of the elevated basicity of the eastern coast of the Chaun Gulf (Chukotka),” Tikhookean. Geol., No. 6, 74–84 (1993).Google Scholar
  7. 7.
    S. V. Efremov, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (SO RAN, Irkutsk, 2012) [in Russian].Google Scholar
  8. 8.
    V. G. Zheltovskii, State Geological Map of the USSR. 1 : 200 000. 1st Edition. Ser. Anyui–Chaun. Sheet R-60-XXVII, XXVIII: Explanatory Notes (TsKTE SVTGU, Magadan, 1980) [in Russian].Google Scholar
  9. 9.
    M. V. Luchitskaya, S. D. Sokolov, and G. E. Bondarenko, S. M. Katkov, “Composition and geodynamic setting of granitoid magmatism in the Alyarmaut Uplift, western Chukchi Peninsula,” Geochem. Int. 48 (9), 891–916 (2010).CrossRefGoogle Scholar
  10. 10.
    A. P. Milov and B. C. Ivanov, “Late Mesozoic granitoids of Central Chukotka,” in Late Mesozoic Granitoids of Chukotka (Magadan, 1965), pp. 141–187 [in Russian].Google Scholar
  11. 11.
    A. P. Milov, Late Mesozoic Granitoid Formations of Central Chukotka (Nauka, Novosibirsk, 1975) [in Russian].Google Scholar
  12. 12.
    L. L. Perchuk, Thermodynamic Regime of Deep Petrogenesis (Nauka, Moscow, 1973) [in Russian].Google Scholar
  13. 13.
    G. O. Polzunenkov, V. V. Akinin, and I. Yu. Cherepanova, New Data on the Age and Composition of the Velitkenai and Kuekvun Granite–Gneiss Massifs (Arctic Chukotka): Application to the Development of the Models of Granite Formation, (SVKNII DVO RAN, Magadan, 2011) [in Russian].Google Scholar
  14. 14.
    O. M. Rosen and B. C. Fedorovskii, Collisional Granitoids and Delamination of the Earth’s Crust (Nauch. Mir, Moscow, 2001) [in Russian].Google Scholar
  15. 15.
    P. L. Tikhomirov, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (St. Petersburg, 1998).Google Scholar
  16. 16.
    P. L. Tikhomirov and M. V. Luchitskaya, “Cretaceous granites of Northeast Asia. Part 2. mineral composition and crystallization conditions,” Vestn. Mosk. Gos. Univ., Ser. 4: Geol, No. 6, 9–15 (2006).Google Scholar
  17. 17.
    P. L. Tikhomirov, M. V. Luchitskaya, and A. Shats, “Age of granitoid plutons, North Chukotka: problem formulation and new SHRIMP U–Pb zircon datings,” Dokl. Earth Sci. 440 (4), 1363–1366 (2011).CrossRefGoogle Scholar
  18. 18.
    V. V. Akinin, M. L. Gelman, B. M. Sedov, J. M. Amato, M. L. Elizabeth, J. Toro, A. T. Calvert, R. M. Fantini, J. E. Wright, and B. A. Natal’in, “Koolen metamorphic complex, NE Russia: implications for the tectonic evolution of the Bering Strait region,” Tectonics 6, 713–729 (1997).Google Scholar
  19. 19.
    V. V. Akinin and A. T. Calvert, “Cretaceous mid-crustal metamorphism and exhumation of the Koolen Gneiss Dome, Chukotka Peninsula, northeastern Russia,” Tectonic Evolution of the Bering Shelf–Chikchi Sea–Arctic Margin and Adjacent Territories, Ed. by E.L. Miller, A. Grantz, and S. Klemperer (Eds.), Geol. Soc. Am. 360, 147–165 (2002).Google Scholar
  20. 20.
    V. V. Akinin, E. L. Miller, E. S. Gottlieb, and G. O. Polzunenkov, “Cretaceous magmatism in the Russian sector of the Arctic Alaska–Chukotka microplate (AACHM),” AGU Fall Meeting (2011).Google Scholar
  21. 21.
    J. L. Anderson and D. R. Smith, “The effects of temperature and fO2 on the Al-In-Hornblende Barometer,” Am. Mineral. 80 (5), 549–559 (1995).CrossRefGoogle Scholar
  22. 22.
    J. L. Anderson, “Status of thermobarometry in granitic batholiths,” Trans. R. Soc. Edinburgh Earth Sci. 87, 125–138 (1997).CrossRefGoogle Scholar
  23. 23.
    J. D. Blundy and T. J. Holland, “Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer,” Contrib. Mineral. Petrol. 104 (2), 208–224 (1990).CrossRefGoogle Scholar
  24. 24.
    S. C. Challener and A. F. Glazner, “Igneous or metamorphic? Hornblende phenocrysts as greenschist facies reaction cells in the half dome granodiorite, California,” Am. Mineral. 102, 436–144 (2017).CrossRefGoogle Scholar
  25. 25.
    S. Erdmann, C. Mattel, M. Pichavant, and A. Kushnir, “Amphibole as an archivist of magmatic crystallization conditions: problems, potential, and implications for inferring magma storage prior to the paroxysmal 2010 eruption of Mount Merapi, Indonesia,” Contrib. Mineral. & Petrol 167, 1016–1038 (2014).CrossRefGoogle Scholar
  26. 26.
    J. Fabries, F. Conquere, and G. Arnaud, “The mafic silicates in the Saint Quay-Portrieux gabbro–diorite intrusion: crystallization conditions of a calc-alkaline pluton,” Bull. Mineral. 107, 715–736 (1984).Google Scholar
  27. 27.
    M. C. Gilbert, R. T. Helz, R. K. Popp, et al., “Experimental studies of amphibole stability,” Amphiboles: Petrology and Experimental Phase Relations, Ed. by D. R. Veblen and P. H. Ribbe, Mineral. Soc. Amer., Rev. Mineral. 9B, 229–353 (1982).Google Scholar
  28. 28.
    A. Giret and J. M. Leger, “Amphibole compositional trends in oversaturated alkaline plutonic ring-complexes,” Can. Mineral. 18, 481–495 (1980).Google Scholar
  29. 29.
    J. Blundy, “Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry,” Contrib. Mineral. Petrol 116, 433–447 (1994).CrossRefGoogle Scholar
  30. 30.
    L. S. Hollister, G. C. Grissom, E. K. Peters, et al., “Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons,” Am. Mineral. 72 ((3-4)), 231–239 (1987).Google Scholar
  31. 31.
    F. Holtz, W. Johannes, N. Tamic, et al., “Maximum and minimum water contents of granitic melts generated in the crust: a reevaluation and implications,” Lithos 56, 1–14 (2001).CrossRefGoogle Scholar
  32. 32.
    S. Ishihara, “The magnetite-series and ilmenite-series granitic rocks,” Mining Geol. 27, 293–305 (1977).Google Scholar
  33. 33.
    E. Jarosewich, J. A. Nelson, and J. A. Norbers, “Reference samples for electron microprobe analysis,” Geostand. Newslett. 4, 43–47 (1980).CrossRefGoogle Scholar
  34. 34.
    M. C. Johnson and M. J. Rutherford, “Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley Caldera (California) volcanic rocks,” Geology 17 ((9)), 837–841 (1989).CrossRefGoogle Scholar
  35. 35.
    B. E. Leake, A. R. Woolley, C. E. Arps, W. D. Birch, M. C. Gilbert, J. D. Grice, F. C. Hawthorne, A. Kato, H. J. Kisch, and V. G. Krivovichev, “Nomenclature of amphiboles: report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names,” Mineral. Mag. 61 (2), 295–321 (1997).CrossRefGoogle Scholar
  36. 36.
    B. E. Leake and A. R. Woolley, W. D. Birch, et al., “Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s amphibole nomenclature,” Am. Mineral. 89, 883–887 (2004).Google Scholar
  37. 37.
    E. L. Miller, S. M. Katkov, V. V. Akinin, and T. A. Dumitru, “Geochronology and thermochronology of Cretaceous plutons and metamorphic country rocks, Anyui—Chukotka fold belt, North East Arctic Russia,” Origin of Northeastern Russia: Paleomagnetism, Geology and Tectonics, Eds. by D.B. Stone et al., (Stephan Mueller Publ. Ser., 2009), pp. 157–175.Google Scholar
  38. 38.
    E. Mutch, J. Blundy, B. Tattitch, et al., “An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer,” Contrib. Mineral. Petrol. 85, 27 (2016).Google Scholar
  39. 39.
    R. Powell and T. J. B. Holland, “On thermobarometry,” J. Metamorph. Geol 26, 155–179 (2008).CrossRefGoogle Scholar
  40. 40.
    F. Ridolfi, A. Renzulli, and M. Puerini, “Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes,” Contrib. Mineral. Petrol. 160, 45–66 (2009).CrossRefGoogle Scholar
  41. 41.
    F. Ridolfi and A. Renzulli, “Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1130°C and 2.2 GPa,” Contrib. Mineral. Petrol. 163, 877–895 (2012).CrossRefGoogle Scholar
  42. 42.
    M. W. Schmidt, “Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer,” Contrib. Mineral. Petrol. 110 (2–3), 304–310 (1992).CrossRefGoogle Scholar
  43. 43.
    F. S. Spear, “Amphibole–plagioclase equilibria: an empirical model for the reaction albite. Tremolite edenite. 4 Quartz,” Contrib. Mineral. Petrol. 77, 355–364 (1981).CrossRefGoogle Scholar
  44. 44.
    E. Stein and C. Dietl, “Hornblende thermobarometry of granitoids from the Central Odenwald (Germany) and their implications for the geotectonic development of the Odenwald,” Mineral. Petrol. 72, 185–207 (2001).CrossRefGoogle Scholar
  45. 45.
    A. L. Streckeisen, “To each plutonic rock its proper name,” Earth Sci. Rev. 12, 1–33 (1976).CrossRefGoogle Scholar
  46. 46.
    W. Thomas and W. G. Ernst, “The aluminum content of hornblende in calcalkaline granitic rocks; a mineralogic barometer calibrated experimentally to 12 kbars,” Fluid–Mineral Interactions: a Tribute to H. P. Eugster," Ed. by R. J. Spencer and I.-M. Chou, Geochem. Soc. Spec. Publ. 2, 59–63 (1990).Google Scholar
  47. 47.
    P. Tikhomirov, M. R. Luchitskaya, and I. Kravchenko-Berezhnoy, “Comparison of Cretaceous granitoids of the Chaun tectonic zone to those of the Taigonos Peninsula, NE Asia: rock chemistry, composition of rock forming minerals, and conditions of formation,” Stephan Mueller Spec. Publ. Ser. 4, 289–311 (2009).Google Scholar
  48. 48.
    R. Turnbull, C. J. Deering, A. D. Tulloch, and S. Weaver, “Second boiling effects on the Al-content of hornblende rims from an exhumed Cretaceous Arc Pluton, Stewart Island, New Zealand,” Am. Mineral. 97, 1129–1144 (2012).CrossRefGoogle Scholar
  49. 49.
    C. R. Vyhnal, H. Y. McSween, and J. A. Speer, “Hornblende chemistry in southern Appalachian granitoids: implications for aluminum hornblende thermobarometry and magmatic epidote stability,” Am. Mineral. 76, 176–188 (1991).Google Scholar
  50. 50.
    A. R. White and B. W. Chappell, “Granitoids types and their distribution in the Lachlan Fold Belt, southeastern Australia,” Mem. Geol. Soc. Am. 159, 21–34 (1983).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Shilo Northeast Interdisciplinary Scientific Research Institute, Far East Branch, Russian Academy of SciencesMagadanRussia

Personalised recommendations