Neurochemical Journal

, Volume 13, Issue 3, pp 295–301 | Cite as

The Effect of Ionizing Radiation on the Creatine–Creatine Kinase System in the Rat Brain and the Radioprotective Effect of Creatine

  • M. S. Petrosyan
  • L. S. NersesovaEmail author
  • N. A. Adamyan
  • M. G. Gazaryants
  • Zh. I. Akopyan

Abstract—Creatine kinase (CK) and its substrates creatine (Cr) and creatine phosphate (CrP) form the Cr–CrP–CK system, which, along with its buffer and transport roles in the energy metabolism of the cell, also performs the function of maintenance of the stability of mitochondrial membranes, which together determines the neuroprotective role of Cr. Considering the anti-apoptotic and antioxidant properties of Cr, as well as the fact that oxidative stress is the basis of radiation damage, we studied (1) the effect of ionizing radiation on the dynamics of post-radiation changes in CK activity and Cr content in outbred rats after their irradiation with a sublethal dose of 4.5 Gy in the presence and absence of Cr and (2) the radioprotective efficacy of Cr for the Cr–CK system of the brain and the survival rate of rats after irradiation at a LD70/30 dose equal to 6.3 Gy. The data we obtained showed a high degree of radiosensitivity and adaptability of the Cr–CK system of the brain, as well as a significant radioprotective efficacy of Cr, both in relation to the Cr–CK system of the brain and the survival rate of rats. The radioprotective effect of Cr calculated using the Kaplan–Meier statistical survival model was 38.6% for the group that received the Cr in 0.9% glucose solution compared to the control group that received water instead of Cr and 30.3% compared to the control group treated with 0.9% glucose. For the group that received the aqueous solution of Cr, the effect was smaller, 20.5% compared with the corresponding control group, which is obviously related to the relatively worse availability of the Cr to cells from the aqueous solution.


creatine kinase creatine brain blood serum rats ionizing radiation creatine radioprotective efficiency 



No external funding was received.


Conflict of interest. The authors declare that they have no conflict of interest.

Ethical approval. All applicable international and institutional guidelines for the care and use of animals were followed.


  1. 1.
    Wallimann, T., Tokarska-Schlattner, M., and Schlattner, U., Amino Acids, 2011, vol. 40, pp. 1271–1296.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Schlattner, U., Tokarska-Schlattner, M., and Wallimann, T., Biochim. Biophys. Acta, 2006, vol. 1762, pp. 164–180.CrossRefPubMedGoogle Scholar
  3. 3.
    Nersesova, L.S., Zhurn. Evolyuts. Biokhim. Fiziol., 2011, vol. 47, no. 2, pp. 120–127.Google Scholar
  4. 4.
    Ames, A., Brain Res. Rev., 2000, vol. 34, pp. 42–68.CrossRefPubMedGoogle Scholar
  5. 5.
    Kutsenko S.A., Voennaya toksikologiya, radiobiologiya i meditsinskaya zashchita (Military Toxicology, Radiobiology, and Medical Protection), Moscow: Foliant, 2004.Google Scholar
  6. 6.
    Catravas, G.N. and McHale, C.G., J. Neurochem., 1975, vol. 24, no. 4, pp. 673–667.CrossRefPubMedGoogle Scholar
  7. 7.
    Burlakova, E.B., Konradov, A.A., and Mal’tseva, E.L., Khim. Fizika, 2003, vol. 22, no. 2, pp. 21–40.Google Scholar
  8. 8.
    Somayaji, Y., Vidya, V., Vishakh, R., Shetty, J., Peter, A.J., and Kumari, S., Cogent Biology, 2016, vol. 2, no. 1, pp. 1–14.Google Scholar
  9. 9.
    Nersesova, L.C., Gazaryants, M.G., Mkrtchyan, Z.C., Meliksetyan, G.O., Pogosyan, L.G., Pogosyan, S.A., Pogosyan, L.L., Karalova, E.M., Avetisyan, A.S., Abroyan, L.O., Karalyan, Z.A., and Akopyan, Zh.I., Radiats. Biologiya. Radioekologiya, 2013, vol. 53, no. 1, pp. 55–62.Google Scholar
  10. 10.
    Pastula, D.M., Moore, D.H., and Bedlack, R.S., Cochrane Database Syst. Rev., 2012, pp. 1–26.Google Scholar
  11. 11.
    Brewer, G.J. and Wallimann, T., J. Neurochem., 2000, vol. 74, pp. 1968–1978.CrossRefPubMedGoogle Scholar
  12. 12.
    Adcock, K.H., Nedelcu, J., Loenneker, T., Wallimann, T., and Wagner, B.P., Dev. Neurosci., 2002, vol. 24, pp. 382–388.CrossRefPubMedGoogle Scholar
  13. 13.
    Salomons, G.S. and Wyss, M., Subcell. Biochem., 2007, vol. 46, no. 17, p. 351.Google Scholar
  14. 14.
    Goel, M.K., Khanna, P., and Kishore, J., Send to Int. J. Ayurveda Res., 2010, vol. 1, no. 4, pp. 274–278.CrossRefGoogle Scholar
  15. 15.
    Petrova, T.A. and Lyzlova, S.N., Vestn. LGU, 1985, no. 24, pp. 88–90.Google Scholar
  16. 16.
    Ennor, A.H. and Rosenberg, H., Biochem. J., 1954, vol. 57, p. 295.CrossRefGoogle Scholar
  17. 17.
    Dobgenski, V. Santos, M.G., D., and Kreider, R., J. Nutri. Health May, 2016, vol. 2, no. 1, pp. 1–5.Google Scholar
  18. 18.
    Costallat, B.L., Miglioli, L., Silva, P., Novo, N.F., and Joao, L.G., Rev. Bras. Med. Esporte, 2007, vol. 13, no. 1, pp. 18–21.Google Scholar
  19. 19.
    Lyslova, S.N. and Stefanov, V.E., Phosphagenkinases, 1991, Boston.Google Scholar
  20. 20.
    Malone, J. and Ullrich, R., Radiat. Res., 2007, vol. 167, no. 2, pp. 176–184.Google Scholar
  21. 21.
    Aksenov, M., Aksenova, M., Butterfield, D.A., and Markesbery, W.R., J. Neurochem., 2000, vol. 74, pp. 2520–2527.CrossRefPubMedGoogle Scholar
  22. 22.
    Lenz, H., Schmidt, M., Welge, V., Schlattner, U., Wallimann, T., Elsasser, H.-P., Wittern, K.-P., Wenck, H., Stab, F., and Blatt, T., J. Invest. Dermatol., 2005, vol. 124, pp. 443–452.CrossRefPubMedGoogle Scholar
  23. 23.
    Kay, L., Nicolay, K., Wieringa, B., Saks, V., and Wallimann, T., J. Biol. Chem., 2000, vol. 275, pp. 6937–6944.CrossRefPubMedGoogle Scholar
  24. 24.
    Meyer, L.E., Machado, L.B., Santiago, A.P., Silva, W.S., De Felice, F.G., Holub, O., Oliveira, M.F., and Galina, A., J. Biol. Chem., 2006, vol. 281, pp. 37361–37371.CrossRefPubMedGoogle Scholar
  25. 25.
    Nersesova, L.S., Petrosyan, M.S., Gazaryants, M.G., Mkrtchyan, Z.S., Meliksetyan, G.O., Pogosyan, L.G., and Akopyan, Zh.I., Radiats. Biologiya. Radioekologiya, 2014, vol. 54, no. 5, pp. 522–530.Google Scholar
  26. 26.
    Koufen, P. and Stark, G., Biochim. Biophys. Acta, 2000, vol. 1501, no. 1, pp. 44–50.CrossRefPubMedGoogle Scholar
  27. 27.
    Hochachka, P.W. and Somero, G.N. Biochemical adaptation, 1984, New Jersey: Princeton University Press.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. S. Petrosyan
    • 1
  • L. S. Nersesova
    • 1
    Email author
  • N. A. Adamyan
    • 1
  • M. G. Gazaryants
    • 1
  • Zh. I. Akopyan
    • 1
  1. 1.Institute of Molecular Biology, National Academy of SciencesYerevanArmenia

Personalised recommendations