Neurochemical Journal

, Volume 13, Issue 3, pp 302–311 | Cite as

The Neurobiological Effects of the Combined Impact of Anti-Orthostatic Hanging and Different Ionizing Irradiations

  • K. B. Lebedeva-Georgievskaya
  • V. S. Kokhan
  • A. K. Shurtakova
  • A. A. Perevezentsev
  • V. S. Kudrin
  • A. S. Shtemberg
  • A. S. BazyanEmail author

Abstract—The purpose of this investigation was to study the neurobiological effects of several interplanetary flight factors: hypogravity, which was modeled in a ground-based experiment using the conventional gravitational unloading technique, a 7-day anti-orthostatic hanging (AOH), and synchronous with it long-term gamma irradiation and high-energy protons. We analyzed the animal behavior in a number of tests: the open field, elevated plus maze, passive avoidance, Morris water test, and the exchange of monoamines in key brain structures. The most interesting and paradoxical result of our study is that in some cases effects were mitigated by the combined effect of radiation and microgravity, which manifests itself both in behavior and in neurochemical changes in all five studied brain structures, despite the fact that these structures play different roles in the performance of behavior. However, the isolated treatment with both radiation and AOH caused significant changes.


ionizing radiation antiorthostatic display behavior concentration of monoamines and metabolites in brain structures 



This study was funded by programs of the Russian Academy of Sciences and grants from the Russian Foundation for Basic Research: project nos. 17-29-01002-ofi_m and 17-29-01005-ofi_m.


Ethical approval: All procedures performed in studies involving animals were in accordance with the ethical standards of bioethical commissions of the Institute of Biomedical Problems of the Russian Academy of Sciences, the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, and the Zakusov Research Institute of Institute of Pharmacology of the Russian Academy of Sciences, Moscow, and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest: The authors declare that they have no conflict of interest.


  1. 1.
    Rabin, B.M., Joseph, J.A., and Shukitt-Hale, B., Adv. Space Res., 2003, vol. 31, no. 1, pp. 127–33.CrossRefPubMedGoogle Scholar
  2. 2.
    Rabin, B.M., Joseph, J.A., and Shukitt-Hale, B., Radiat. Res., 2005, vol. 164, no. 4.Google Scholar
  3. 3.
    Machida, M., Lonart, G., and Britten, R.A., Radiat. Res., 2010, vol. 174, no. 5, pp. P. 618–623.Google Scholar
  4. 4.
    Britten, R.A., Davis, L.K., Johnson, A.M., Keeney, S., Siegel, A., Sanford, L.D., Singletary, S.J., and Lonart, G., Radiat. Res., 2012, vol. 77, no. 2, pp. 146–151.CrossRefGoogle Scholar
  5. 5.
    Rabin, B.M., Hunt, W.A., Joseph, J.A., Dalton, T.K., and Kandasamy, S.B., Radiat. Res., 1991, vol. 128, no. 2, pp. 216–221.CrossRefPubMedGoogle Scholar
  6. 6.
    Pecaut, M.J., Haerich, P., Zuccarelli, C.N., Smith, A.L., Zendejas, E.D., and Nelson, G.A., Cogn. Affect Behav. Neurosci., 2002, vol. 2, no. 4, pp. 329–340.CrossRefPubMedGoogle Scholar
  7. 7.
    Shtemberg, A.S., Kokhan, V.S., Kudrin, V.S., Matveeva, M.I., Lebedeva-Georgievskaya, K.B., Timoshenko, G.N., Molokanov, A.G., Krasavin, E.A., Narke-vich, V.B., Klodt, P.M., and Bazyan, A.S., Neurochemical J., 2015, vol, 9, no 1, pp. 66–72.CrossRefGoogle Scholar
  8. 8.
    Shtemberg, A.S., Lebedeva-Georgievskaya, K.B., Matveeva, M.I., Kudrin, V.S., Narkevich, V.B., Klodt, P.M., and Bazyan, A.S., Izvestiya RAN. Seriya Biologicheskaya, 2014, no. 2, pp. 168–175.Google Scholar
  9. 9.
    Kokhan, V.S., Matveeva, M.I., Bazyan, A.S., Kudrin, V.S., Mukhametov, A., and Shtemberg, A.S., Behav. Brain Res., 2017, vol. 320, pp. 473–483.CrossRefPubMedGoogle Scholar
  10. 10.
    Mao, X.W., Nishiyama, N.C., Pecaut, M.J., Campbell-Beachler, M., Gifford, P., Haynes, K.E., Becronis, C., and Gridley, D.S., Radiation Res., vol. 185, no. 6, pp. 647–657.Google Scholar
  11. 11.
    Pani, G., Verslegers, M., Quintens, R., Samari, N., de Saint-Georges, L., van Ostveldt, P., Baatout, S., and Benotmane, M.A., PLoS One, 2016, vol. 11, no. 5, e0155260.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bazyan, A.S., 18th Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya “Neiroinformatika–16”: Lektsii po neiroinformatike, Moscow: NIYaU MIFI, 2016, pp. 147–170.Google Scholar
  13. 13.
    Bazyan, A.S. Uspekhi Fiziol. Nauk, 2016, vol. 47, no. 1, pp. 17–29.Google Scholar
  14. 14.
    Bazyan, A.S. Uspekhi Fiziol. Nauk, 2016, vol. 47, no. 3, pp. 15–33.Google Scholar
  15. 15.
    Bazyan, A.S. and Rogal’, A.V. Uspekhi Fiziol. Nauk, 2015, vol. 46, no. 1, pp. 3–21.Google Scholar
  16. 16.
    Shtemberg, A.S., Bazyan, A.S., Lebedeva-Georgievskaya, K.B., Matveeva, M.I., Kudrin, V.S., and Kokhan, V.S. Aviakosm. Ekol. Meditsina, 2013, vol. 47, no. 6, pp. 54–60.Google Scholar
  17. 17.
    Shtemberg A.S. Aviakosm. Ekol. Meditsina, 1997, vol. 31, no. 2, pp. 38–43.Google Scholar
  18. 18.
    Shtemberg A.S. Aviakosm. Ekol. Meditsina, 2005, vol. 39, no. 4, pp. 50–52.Google Scholar
  19. 19.
    Raber, J., Allen, A.R., Rosi, S., Sharma, S., Dayger, C., Davis, M.J., and Fike, J.R., Behav. Brain. Res., 2013, vol. 246, pp. 69–75.CrossRefPubMedGoogle Scholar
  20. 20.
    Davis, C.M., De Cicco-Skinner, K.L., and Hienz, R.D., PLoS One, 2015, vol. 10, no. 12, e0144556.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Luo, H., Li, Y., Liu, Z., Cao, L., Zhang, Z., Wang, Y., Zhang, X., Liu, Z., and Shi, X., Neural Regen Res., 2016. vol. 11, no. 9, pp. 1480—1486.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chang, P.Y., Doppalapudi, R., Bakke, J., Wang, A., Menda, S., and Davis, Z., Radiat. Environ. Biophys., 2010, vol. 49, no. 3, pp. 379–388.Google Scholar
  23. 23.
    Khan, S.Y., Tariq, M.A., Perrott, J.P., Brumbaugh, C.D., Kim, H.J., Shabbir, M.I., Ramesh, G.T., and Pourmand, N., Mol. Cell. Biochem., 2013, vol. 382, nos. 1–2, pp. 225–235.CrossRefPubMedGoogle Scholar
  24. 24.
    Lowe, X. and Wyrobek, A., Current Genomics, 2012, vol. 13, no. 6, pp. 489–497.Google Scholar
  25. 25.
    Tseng, B.P., Lan, M.L., Tran, K.K., Acharya, M.M., Giedzinski, E., and Limoli, C.L., Redox. Biology, 2013, vol. 19, no. 1, pp. 153–162.Google Scholar
  26. 26.
    Mahar, I., Bambico, F.R., Mechawar, N., and Nobrega, J.N., Neurosci. Biobehav. Rev., 2014, vol. 38, pp. 173–192.Google Scholar
  27. 27.
    Van Bockstaele, E.J., Biswas, A., and Pickel, V.M., Brain Res., 1993, vol. 624, nos. 1–2, pp. 188–198.Google Scholar
  28. 28.
    de Wardener, H.E., Physiol. Rev., 2001, vol. 81, no. 4, pp. 1599–1658.CrossRefPubMedGoogle Scholar
  29. 29.
    Belujon, P., Patton, M.H., and Grace, A.A., Cerebral Cortex, 2014, vol. 24, no. 4, pp. 968–977.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • K. B. Lebedeva-Georgievskaya
    • 1
  • V. S. Kokhan
    • 1
  • A. K. Shurtakova
    • 1
  • A. A. Perevezentsev
    • 1
  • V. S. Kudrin
    • 1
    • 3
  • A. S. Shtemberg
    • 1
  • A. S. Bazyan
    • 1
    • 2
    Email author
  1. 1.Institute of Biomedical Problems, Russian Academy of SciencesMoscowRussia
  2. 2.Zakusov Institute of Pharmacology, Russian Academy of SciencesMoscowRussia
  3. 3.Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of SciencesMoscowRussia

Personalised recommendations