Advertisement

Neurochemical Journal

, Volume 13, Issue 2, pp 145–155 | Cite as

The Effect of Severe Hypoxia on HIF1- and Nrf2-Mediated Mechanisms of Antioxidant Defense in the Rat Neocortex

  • K. V. SarievaEmail author
  • A. Yu. Lyanguzov
  • O. V. Galkina
  • O. V. Vetrovoy
Experimental Articles
  • 2 Downloads

Abstract

The transcription factor (TF) HIF1 is one of the most important factors of adaptation to chronic cerebral hypoxia. However, under the conditions of acute hypoxia and reoxygenation, the stress response TF (NRF2) becomes important. The interaction between these proteins at the level of regulation of antioxidant defense and glucose metabolism has been shown previously in hypoxia-sensitive cancer tumors. Here, we have studied the effect of severe hypobaric hypoxia (SH) on HIF1- and NRF2-dependent processes in the rat neocortex. We revealed the joint regulation of glutathione-dependent antioxidant systems by these proteins, which influenced the total antiradical activity and the cellular redox status. In particular, HIF1 inhibition prevented the SH-induced oxidative shift 23 h after reoxygenation, which was accompanied by an increase in the content of total glutathione and the activity of glutathione reductase. Both of these effects were NRF2-dependent, which suggests that this transcription factor is activated in response to SH in combination with HIF1 inhibition. The data confirm the previous hypothesis about the maladaptive effect of HIF1 under the conditions of acute hypoxia and reoxygenation and point to the contribution of NRF2 the protective mechanisms in the post-hypoxic period. The hypothesis of interaction between these transcription factors in the (post)hypoxic period requires further verification and may have substantial influence on understanding the molecular pathomechanisms of cerebral hypoxia.

Keywords

NRF2 HIF1 glutathione glutathione-dependent antioxidant system antioxidant activity redox status neocortex severe hypobaric hypoxia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bolanos, J.P., Almeida, A., and Moncada, S., Trends Biochem. Sci., 2010, vol. 35, no. 3, pp. 145–149.CrossRefGoogle Scholar
  2. 2.
    Machler, P., Wyss, M.T., Elsayed, M., Stobart, J., and Gutierrez, R., Von Faber- Castell, A., Kaelin, V., Zuend, M., San Martin, A., Romero- Gomez, I., et al., Cell Metab., 2016, vol. 23, no. 1, pp. 94–102.CrossRefGoogle Scholar
  3. 3.
    Duran, J., Saez, I., Gruart, A., Guinovart, J.J., and Delgado- Garcia, J.M., J. Cereb. Blood Flow Metab., 2013, vol. 33, no. 4, pp. 550–556.CrossRefGoogle Scholar
  4. 4.
    Atwell, D., Buchan, A.M., Charpak, S., Laurirzen, M., Macvicar, B.A., and Newman, E.A., Nature, 2010, vol. 468, pp. 232–243.CrossRefGoogle Scholar
  5. 5.
    Vetrovoy, O.V., Rybnikova, E.A., Glushchenko, T.S., Baranova, K.A., and Samoilov, M.O., Neurochem. J., 2014, vol. 8, no. 2, pp. 103–108.CrossRefGoogle Scholar
  6. 6.
    Shih, A.Y., J. Neurosci., 2005, vol. 25, no. 44, pp. 10321–10335.CrossRefGoogle Scholar
  7. 7.
    Fernandez, S., Almeida, A., and Bolanos, J.P., Biochem. J., 2012, vol. 443, pp. 3–11.CrossRefGoogle Scholar
  8. 8.
    Liu, W., Shen, S., Zhao, X., and Chen, G., Int. J. Biochem. Mol. Biol., 2012, vol. 3, no. 2, pp. 165–178.Google Scholar
  9. 9.
    Bernaudin, M., Nedelec, A.-S., and Divoux, D., Mackenzie, E.T., Petit, E., and Schumann- Bard, P., J. Cereb. Blood Flow Metab., 2002, vol. 22, no. 4, pp. 393–403.CrossRefGoogle Scholar
  10. 10.
    Sun, Y., Chen, X., Zhang, X., Shen, X., Wang, M., Wang, X., Liu, W.-C., Liu, C.-F., Liu, J., Liu, W., et al., Front. Mol. Neurosci., 2017, vol. 10.Google Scholar
  11. 11.
    Chavez, J.C., Agani, F., Pichiule, P., and LaManna, J.C., J. Appl. Physiol., 2000, vol. 89, no. 5, pp. 1937–1942.CrossRefGoogle Scholar
  12. 12.
    Dengler, V.L., Galbraith, M.D., and Espinosa, J.M., Crit. Rev. Biochem. Mol. Biol., 2014, vol. 49, no. 1, pp. 1–15.CrossRefGoogle Scholar
  13. 13.
    Ann Sheldon, R., Lee, C.L., Jiang, X., Knox, R.N., and Ferriero, D.M., Pediatr. Res., 2014, vol. 76, no. 1, pp. 46–53.CrossRefGoogle Scholar
  14. 14.
    Rybnikova, E. and Samoilov, M., Front. Neurosci., 2015, vol. 9, pp. 1–11.CrossRefGoogle Scholar
  15. 15.
    Huang, Y., Li, W., Su, Z., and Kong, A.N.T., J. Nutr. Biochem., 2015, vol. 26, no. 12, pp. 1401–1413.CrossRefGoogle Scholar
  16. 16.
    Wild, A.C., Moinova, H.R., and Mulcahy, R.T., J. Biol. Chem., 1999, vol. 274, no. 47, pp. 33627–33636.CrossRefGoogle Scholar
  17. 17.
    Ji, L., Li, H., Gao, P., Shang, G., Zhang, D.D., Zhang, N., and Jiang, T., PLoS One, 2013, vol. 8, no. 5, pp. 1–12.Google Scholar
  18. 18.
    Singh, A., Wu, H., Zhang, P., Happel, C., Ma, J., and Biswal, S., Mol. Cancer Ther., 2010, vol. 9, no. 8, pp. 2365–2376.CrossRefGoogle Scholar
  19. 19.
    Hayes, J.D. and McMahon, M., Trends Biochem. Sci., 2009, vol. 34, no. 4, pp. 176–188.CrossRefGoogle Scholar
  20. 20.
    Thimmulappa, R.K., Mai, K.H., and Srisuma, S., Cancer Res., 2002, vol. 62, pp. 5196–5203.Google Scholar
  21. 21.
    Shih, A.Y., Johnson, D.A., Wong, G., Kraft, A.D., Jiang, L., Erb, H., Johnson, J.A., and Murphy, T.H., J. Neurosci., 2003, vol. 23, no. 8, pp. 3394–3406.CrossRefGoogle Scholar
  22. 22.
    Kislin, M.S., Tyul'kova, E.I., and Samoilov, M.O., Neirokhimiya, 2010, vol. 27, no. 2, pp. 144–149.Google Scholar
  23. 23.
    Rybnikova, E., Vataeva, L., Tyulkova, E., Gluschenko, T., Otellin, V., Pelto-Huikko, M., and Samoilov, M.O., Behav. Brain Res., 2005, vol. 160, no. 1, pp. 107–114.CrossRefGoogle Scholar
  24. 24.
    Vataeva, L.A., Tyul'kova, E.I., and Samoilov, M.O., Dokl. Biol. Sci., 2004, vol. 395, no. 3, pp. 109–111, http://www.ncbi.nlm.nih.gov/pubmed/15255136CrossRefGoogle Scholar
  25. 25.
    Kislin, M.S., Stroev, S.A., Glushchenko, T.S., Tiul' kova, E.I., Pelto- Huikko, M., and Samoilov, M.O., Biomed. Khim., 2013, vol. 59, no. 6, pp. 673–681.CrossRefGoogle Scholar
  26. 26.
    Rybnikova, E., Vorobyev, M., Pivina, S., and Samoilov, M., Neurosci. Let., 2012, vol. 513, no. 1, pp. 100–105.CrossRefGoogle Scholar
  27. 27.
    Vetrovoy, O., Tulkova, E., Sarieva, K., Kotryahova, E., Zenko, M., and Rybnikova, E., Neurosci. Lett., 2017, vol. 639, pp. 49–52.CrossRefGoogle Scholar
  28. 28.
    Vetrovoi, O.V., Rybnikova, E.A., Glushchenko, T.S., and Samoilov, M.O., Neuroscience and Behavioral Physiology, 2015, vol. 45, no. 4, pp. 367–370.CrossRefGoogle Scholar
  29. 29.
    Segura, C., Bandres, E., Troconiz, I.F., Saya, O., Renedo, M.J., and Garrido, M.J., Pharm. Res., 2004, vol. 21, no. 4, pp. 567–573.CrossRefGoogle Scholar
  30. 30.
    Rapisarda, A., Zalek, J., Hollingshead, M., Braunschweig, T., Uranchimeg, B., Bonomi, C.A., Borgel, S.D., Carter, J.P., Hewitt, S.M., Shoemaker, R.H., et al., Cancer Res., 2004, vol. 64, no. 19, pp. 6845–6848.CrossRefGoogle Scholar
  31. 31.
    Rybnikova, E., Sitnik, N., Gluschenko, T., Tjulkova, E., and Samoilov, M.O., Brain Res., 2006, vol. 1089, no. 1, pp. 195–202.CrossRefGoogle Scholar
  32. 32.
    Rodrigues, G. de L.A., Pellegrino, de I.A., in General Neurochemical Techniques, 1986, p. 568.Google Scholar
  33. 33.
    Prior, R.L., Wu, X., and Schaich, K., J. Agric. Food Chem., 2005, vol. 53, no. 10, pp. 4290–4302.CrossRefGoogle Scholar
  34. 34.
    Akerboom, T.P.M. and Sies, H., in Methods in Enzymology, vol. 77, Academic Press, 1981, pp. 373–381.CrossRefGoogle Scholar
  35. 35.
    Levander, O.A. and Smith, A.D., in Methods in Enzymology, Academic Press, 2002, pp. 113–121.Google Scholar
  36. 36.
    Costa, L.G., Hogston, E., Lawrence, D.A., and Reed, D.J., in Current Protocols in Toxicology, John Wiley & Sons, 2005, pp. 1141–1227.Google Scholar
  37. 37.
    Folch, J., Lees, M., and Sloane, G.H., J. Biol. Chem., 1957, vol. 226, no. 1, pp. 497–509.Google Scholar
  38. 38.
    Bidlack, W.R. and Tappel, A.L., Lipids, 1973, vol. 8, no. 4, pp. 203–207.CrossRefGoogle Scholar
  39. 39.
    Bartlett, R., J. Biol. Chem., 1959, vol. 234, no. 3, pp. 449–458.Google Scholar
  40. 40.
    Dunn, O.J., J. Am. Stat. Assoc., 1961, vol. 56, no. 293, pp. 52–64.CrossRefGoogle Scholar
  41. 41.
    Ray, P.D., Huang, B.W., and Tsuji, Y., Cell. Signal., 2012, vol. 24, no. 5, pp. 981–990.CrossRefGoogle Scholar
  42. 42.
    Galkina, O.V., Neurochem. J., 2013, vol. 7, no. 2, pp. 89–97.CrossRefGoogle Scholar
  43. 43.
    Deponte, M., Biochim. Biophys. Acta, 2013, vol. 1830, pp. 3217–3266.CrossRefGoogle Scholar
  44. 44.
    Huang, Y., Fang, W., Wang, Y., Yang, W., and Xiong, B., Int. J. Mol. Med., 2012, vol. 29, no. 5, pp. 906–912.Google Scholar
  45. 45.
    Brigelius-Flohe, R. and Maiorino, M., Biochim. Biophys. Acta, 2013, vol. 1830, no. 5, pp. 3289–3303.CrossRefGoogle Scholar
  46. 46.
    Harvey, C.J., Thimmulappa, R.K., Singh, A., Blake, D.J., Ling, G., Wakabayashi, N., Fujii, J., Myers, A., and Biswal, S., Free Radic. Biol. Med., 2009, vol. 46, no. 4, pp. 443–453.CrossRefGoogle Scholar
  47. 47.
    Liu, H., Colavitti, R., Rovira, I.I., and Finkel, T., Circ. Res., 2005, vol. 97, no. 10, pp. 967–974.CrossRefGoogle Scholar
  48. 48.
    Fukutomi, T., Takagi, K., Mizushima, T., Ohuchi, N., and Yamamoto, M., Mol. Cell. Biol., 2014, vol. 34, no. 5, pp. 832–846.CrossRefGoogle Scholar
  49. 49.
    Zhang, D.D., Drug Metab. Rev., 2006, vol. 38, no. 4, pp. 769–789.CrossRefGoogle Scholar
  50. 50.
    Tanaka, N., Ikeda, Y., Ohta, Y., Deguchi, K., Tian, F., Shang, J., Matsuura, T., and Abe, K., Brain Res., 2011, vol. 1370, pp. 246–253.CrossRefGoogle Scholar
  51. 51.
    Jimenez-Blasco, D., Santofimia-Castano, P., Gonzalez, A., Almeida, A., and Bolanos, J., Cell Death Differ., 2015, vol. 22, pp. 1877–1889.CrossRefGoogle Scholar
  52. 52.
    Rybnikova, E.A., Baranova, K.A., Gluschenko, T.S., Vetrovoy, O., Sidorova, M., and Portnichenko, V.I., Int. J. Physiol. Pathophysiol., 2015, vol. 6, no. 1, pp. 1–11.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • K. V. Sarieva
    • 1
    • 2
    Email author
  • A. Yu. Lyanguzov
    • 3
  • O. V. Galkina
    • 2
  • O. V. Vetrovoy
    • 1
    • 2
  1. 1.Pavlov Institute of PhysiologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Chair of BiochemistrySt. Petersburg State University, Faculty of BiologySt. PetersburgRussia
  3. 3.Observatory of Environmental Safety Resource Center, Research ParkSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations