Neurochemical Journal

, Volume 13, Issue 2, pp 201–209 | Cite as

Prenatal Immobilization Stress-Induced Spatial Memory, Depression and Anxiety-Like Behavior Deficit on the F1 Generation in the Female Mice: Possible Involvement of the Brain-Derived Neurotrophic Factor

  • Elham Mahmoudi
  • Hedayat Sahraei
  • Zahra Bahari
  • Mohammad Reza Afarinesh
  • Gila Pirzad Jahromi
  • Boshra Hatef
  • Gholam Hossein MeftahiEmail author
Experimental Articles


The prenatal stress during pregnancy has a wide variety of negative effects on the offspring behaviors. As such, in the present study the effect of prenatal immobilization stress was investigated on the brain BDNF level, spatial memory, anxiety and depression-like behavior in the F1 generation female NMRI mice. Twenty female pregnant mice were randomly allocated to stress and control groups (n = 10/group). The stress group was placed in PVC cylinders (2.5 cm in diameter and 20 cm in length) for one hour/day until the 15th day of pregnancy. The female F1 offspring was nursed by their mothers until reaching 25–30 g (9–10 weeks) which was tested for spatial memory, anxiety and depressive-like behavior using Barnes Maze, elevated plus-maze and forced swimming test, respectively. Also, the brain BDNF level was assessed by the ELISA method. Mice that underwent prenatal restraint stress exhibited impaired spatial memory in the Barnes Maze, which the time and distance to achieve the target hole and the number of errors in the female adult offspring increased than the control group. In the elevated plus-maze, the animals that underwent prenatal restraint stress spent less time in the open arms of the maze and reduced entering the open arms, compared to the control group. In addition, stress caused a significant decrease in swim time and a significant increase in float time for the female adult offspring compared to the control group. The brain BDNF concentration also decreased significantly in the stress group compared to the control group. This data suggests that prenatal stress may impair spatial memory and induce anxiety and depressive-like behavior in the adult offspring female mice via reducing brain BDNF.


anxiety BDNF depression F1 generation stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McEwen, B.S., Dialogues Clin. Neurosci., 2006, vol. 8, no. 6, pp. 367.Google Scholar
  2. 2.
    McEwen, B.S., Bowles, N.P., Gray, J.D., Hill, M.N., Hunter, R.G., Karatsoreos, I.N., and Nasca, C., Nat. Neurosci., 2015, vol. 18, no. 10, pp.1353.CrossRefGoogle Scholar
  3. 3.
    Glover, V., Adv. Neurobiol. 2015, vol. 10, pp. 269–283.CrossRefGoogle Scholar
  4. 4.
    Abe, H., Hidaka, N., Kawagoe, C., Odagiri, K., Watanabe, Y., Ikeda, T., Ishizuka, Y., Hashiguchi, H., Takeda, R., Nishimori, T., and Ishida, Y., Neurosci. Res. 2007, vol. 59, pp. 145–151.CrossRefGoogle Scholar
  5. 5.
    Benoit, J.D., Rakic, P., and Frick, K.M., Behav. Brain Res., 2015, vol. 281, pp. 1–8.CrossRefGoogle Scholar
  6. 6.
    Boersma, G.J. and Tamashiro, K.L., Neurobiol. Stress, 2015, vol. 1, pp. 100–108.CrossRefGoogle Scholar
  7. 7.
    Markham, J.A., Taylor, A.R., Taylor, S.B., Bell, D.B., and Koenig, J.I., Front. Behav. Neurosci., 2010, vol. 4, pp. 173–176.CrossRefGoogle Scholar
  8. 8.
    Popoli, M., Yan, Z., McEwen, B.S., and Sanacora, G., Nat. Rev. Neurosci., 2012, vol. 13, no. 1, pp. 22–37.CrossRefGoogle Scholar
  9. 9.
    Maccari, S., Krugers, H.J., Morley-Fletcher, S., Szyf, M., and Brunton, P.J., J. Neuroendocrinol., 2014, vol. 26, pp. 707–723.CrossRefGoogle Scholar
  10. 10.
    Wingenfeld, K. and Wolf, O.T., CNS Neurosci. Ther., 2011, vol. 17, pp. 714–722.CrossRefGoogle Scholar
  11. 11.
    Brunton, P.J. and Russell, J.A., J. Neuroendocrinol., 2010, vol. 22, pp. 258–271.CrossRefGoogle Scholar
  12. 12.
    Koehl, M., Darnaudery, M., Dulluc, J., Van Reeth, O., Le Moal, M., and Maccari, S., J. Neurobiol. 1999, vol. 40, pp. 302–315.CrossRefGoogle Scholar
  13. 13.
    Miranda, A. and Sousa, N., Brain Behav., 2018, vol. 8, p. e00920.CrossRefGoogle Scholar
  14. 14.
    Buss, C., Davis, E.P., Shahbaba, B., Pruessner, J.C., Head, K., and Sandman, C.A., Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, no. 20, pp. E1312–E1319.CrossRefGoogle Scholar
  15. 15.
    Pryce, C.R., Brain Res. Rev. 2008, vol. 57, no. 2, pp. 596–605.CrossRefGoogle Scholar
  16. 16.
    Rogalska, J., Vita Horm. 2010, vol. 82, pp. 391–419.CrossRefGoogle Scholar
  17. 17.
    Ratajczak, P., Kus, K., Murawiecka, P., Słodzińska, I., Giermaziak, W., and Nowakowska, E., Acta Neurobiol. Exp., 2015, vol. 75, no. 3, pp. 314–325.Google Scholar
  18. 18.
    Zohar, I., Shoham, S., and Weinstock, M., Europ. J. Neurosci., 2016, vol. 43, p. 590e600.CrossRefGoogle Scholar
  19. 19.
    Taliaz, D., Loya, A., Gersner, R., Haramati, S., Chen, A., and Zangen, A., J. Neurosci., 2011, vol. 31, no. 12, pp. 4475–4483.CrossRefGoogle Scholar
  20. 20.
    Autry, A.E. and Monteggia, L.M., Pharmacol. Rev. 2012, vol. 64, p. 238e258.CrossRefGoogle Scholar
  21. 21.
    Podsevatkin, V.G., Kiriukhina, S.V., Podsevatkin, D.V., Podsevatkina, S.V., and Blinov, D.S., Eksp. Klin. Farmakol., 2008, vol. 71, pp. 22–25.Google Scholar
  22. 22.
    Zhang, S.Y., Wang, J.Z., Li, J.J., Wei, D.L., Sui, H.S., Zhang, Z.H., Zhou, P., and Tan, J.H., Biol. Reprod., 2011, vol. 84, pp. 672–681.CrossRefGoogle Scholar
  23. 23.
    Ehteram, B.Z., Sahraei, H., Meftahi, G.H., and Khosravi, M., Braz. Arch. Biol. Technol., 2017, vol. 60, p. e17160607.CrossRefGoogle Scholar
  24. 24.
    Lucassen, P.J., Pruessner, J., Sousa, N., Almeida, O.F., Van Dam, A.M., Rajkowska, G., Swaab, D.F, and Czéh, B., Acta Neuropathologica. 2014, vol. 127, no. 1, pp. 109–135.CrossRefGoogle Scholar
  25. 25.
    Markham, J.A., Taylor, A.R., Taylor, S.B., Bell, D.B., and Koenig, J.I., Front. Behav. Neurosci., 2010, vol. 25, pp. 173–176.Google Scholar
  26. 26.
    Yang, J., Han, H., Cao, J., Lingjiang, L., and Xu, L., Hippocampus, 2006, vol. 16, pp. 431–436.CrossRefGoogle Scholar
  27. 27.
    Salomon, S., Bejarm C., Schorer-Apelbaum, D., and Weinstock, M., J. Neuroendocrinol. 2011, vol. 23, pp. 118–128.CrossRefGoogle Scholar
  28. 28.
    Wu, J., Song, T.B., Li, Y.J., He, K.S., Ge, L., and Wang, L.R., Brain Res. 2007, vol. 1141, pp. 205–213.CrossRefGoogle Scholar
  29. 29.
    Sierksma, A.S., Prickaerts, J., Chouliaras, L., Rostamian, S., Delbroek, L., Rutten, B.P., Steinbusch, H.W., and van den Hove, D.L., Neurobiol. Aging. 2013, vol. 34, pp. 319–337.CrossRefGoogle Scholar
  30. 30.
    Matthews, S., Trends Endocrinol. Metab., 2002, vol. 13, pp. 373–380.CrossRefGoogle Scholar
  31. 31.
    Wellberg, L., Seckl, J., and Holmes, M., Neurosci., 2001, vol. 104, pp. 71–79.CrossRefGoogle Scholar
  32. 32.
    Benoit, J.D., Rakic, P., and Frick, K.M., Behav. Brain Res., 2015, vol. 281, pp. 1–8.CrossRefGoogle Scholar
  33. 33.
    Shrager, Y., Bayley, P.J., Bontempi, B., Hopkins, R.O., and Squire, L.R., Proc. Natl. Acad. Sci. U. S. A. 2007, vol. 104, no. 8, pp. 2961–2966.CrossRefGoogle Scholar
  34. 34.
    Krugers, H.J., Hoogenraad, C.C., and Groc, L. Nat. Rev. Neurosci., 2010, vol. 11, pp. 675–681.CrossRefGoogle Scholar
  35. 35.
    Kim, J.J. and Diamond, D.M. Nat. Rev. Neurosci., 2002, vol. 3, pp. 453–462.CrossRefGoogle Scholar
  36. 36.
    Cottrell, E.C. and Seckl, J.R., Front. Behav. Neurosci., 2009, vol. 3, pp. 19.CrossRefGoogle Scholar
  37. 37.
    Levitt, N.S., Lindsay, R.S., Holmes, M.C., and Seckl, J.R., Neuroendocrinol., 1996, vol. 64, no. 6, pp. 412–418.CrossRefGoogle Scholar
  38. 38.
    Van Lieshout, R.J. and Boylan, K., J. Psychiatry, 2010, vol. 55, pp. 422–430.Google Scholar
  39. 39.
    Walf, A.A. and Frye, C.A., Nature Protocols, 2007, vol. 2, no. 2, pp. 322–328.CrossRefGoogle Scholar
  40. 40.
    Glombik, K., Stachowicz A., Slusarczyk J., Trojan E., and Budziszewska B., Psychoneuroendocrinol., 2015, vol. 60, pp. 151–162.CrossRefGoogle Scholar
  41. 41.
    Guan L., Jia N., Zhao X., Zhang X., and Tang G., Brain Res. Bull. 2013, vol. 99, pp. 1–8.CrossRefGoogle Scholar
  42. 42.
    Akatsu, S., Ishikawa, C., Takemura, K., Ohtani, A., and Shiga, T., Neurosci. Res. 2015, vol. 101, pp. 15e23.CrossRefGoogle Scholar
  43. 43.
    Palacios-García I., Lara-Vásquez, A., Montiel, J.F., Díaz-Véliz, G.F., Sepúlveda, H., Utreras E., Montecino M., González-Billault, C., and Aboitiz, F., PLoS One, 2015, vol. 10, p. e0117680.CrossRefGoogle Scholar
  44. 44.
    Zhang, W. and Rosenkranzm, J.A., Neurosci. 2012, vol. 226, pp. 459–474.CrossRefGoogle Scholar
  45. 45.
    Etkin, A., Functional Neuroanatomy of Anxiety: A Neural Circuit Perspective. In: Behavioral Neurobiology of Anxiety and Its Treatment, Stein, M.B. and Steckler, T., Eds., vol. 2, Springer-Verlag Berlin: Heidelberg, Germany, 2009, pp. 251–277.CrossRefGoogle Scholar
  46. 46.
    Nuss, P., Neuropsychiatr. Dis. Treat. 2015, vol. 11, pp. 165–175.Google Scholar
  47. 47.
    Licinio, J. and Wong, M.L., Molecular Psychiatry, 2002, vol. 7, no. 6, pp. 519–519.CrossRefGoogle Scholar
  48. 48.
    Dong, E., Dzitoyeva, S.G., Matrisciano, F., Tueting, P., Grayson, D.R., and Guidotti, A., Biol. Psychiatry, 2015, vol. 77, p. 589e596.CrossRefGoogle Scholar
  49. 49.
    Yeh, C.M., Huang, C.C., and Hsu, K.S., J. Physiol., 2012, vol. 590, p. 991e1010.CrossRefGoogle Scholar
  50. 50.
    Jia, N., Li, Q., Sun, H., Song, Q., Tang, G., Sun, Q., Wang, W., Chen, R., Li, H., and Zhu, Z., Neurochem-ical Res., 2015, vol. 40, no. 5, pp. 1074–1082.CrossRefGoogle Scholar
  51. 51.
    Boersma, G.J., Lee, R.S., Cordner, Z.A., Ewald, E.R., Purcell, R.H., Moghadam, A.A., and Tamashiro, K.L., Epigenetics, 2014, vol. 9, no. 3, pp. 437–447.CrossRefGoogle Scholar
  52. 52.
    St-Cyr, S. and McGowan, P.O., Front. Behav. Neurosci., 2015, vol. 1, no. 9, pp. 1–10.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Elham Mahmoudi
    • 1
  • Hedayat Sahraei
    • 2
  • Zahra Bahari
    • 2
    • 3
  • Mohammad Reza Afarinesh
    • 4
  • Gila Pirzad Jahromi
    • 2
  • Boshra Hatef
    • 2
  • Gholam Hossein Meftahi
    • 2
    Email author
  1. 1.Department of BiologyAzad Islamic University, North BranchTehranIran
  2. 2.Neuroscience Research CenterBaqiyatallah University of Medical SciencesTehranIran
  3. 3.Department of Physiology and Medical Physic, Faculty of MedicineBaqiyatallah University of Medical SciencesTehranIran
  4. 4.Kerman Neuroscience Research Center, Institute of NeuropharmacologyKerman University of Medical SciencesKermanIran

Personalised recommendations