Advertisement

Polymer Science, Series C

, Volume 61, Issue 1, pp 134–144 | Cite as

Cross-Metathesis between Polynorbornene and Poly(5,6-epoxy-1-octenamer)

  • A. V. RoenkoEmail author
  • Yu. I. Denisova
  • M. L. Gringolts
  • A. S. Peregudov
  • G. A. Shandryuk
  • E. Sh. Finkelshtein
  • Y. V. Kudryavtsev
Article
  • 26 Downloads

Abstract

The macromolecular reaction of interchain cross-metathesis between polynorbornene and poly(5,6-epoxy-1-octenamer) in the presence of the first-generation Grubbs catalyst is studied. Chemically stable poly(5,6-epoxy-1-octenamer) is obtained through metathesis polymerization of 5,6-epoxycyclooct-1-ene with the second-generation Grubbs ruthenium catalyst. New random multiblock copolymers of norbornene and 5,6-epoxycyclooct-1-ene with different average block lengths determined by the reaction time, solvent type, and concentrations of the catalyst and initial homopolymers are synthesized and characterized by NMR, GPC, and DSC. Despite a distance between the epoxy substituent and the reaction center (double bond), poly(5,6-epoxy-1-octenamer) shows a lower activity in the cross-metathesis reaction with polynorbornene compared to unsubstituted polyoctenamer. The influence of epoxy groups present in the backbones of homopolymer and norbornene–cyclooctene multiblock copolymers on their thermal characteristics is studied. It is shown that the glass transition and melting temperatures increase with the concentration of epoxy groups upon the incorporation of an oxirane fragment into both homopolymers and copolymers. The crystallinity of poly(5,6-epoxy-1-octenamer) increases with the content of trans-С=С bonds in the polymer.

Notes

ACKNOWLEDGMENTS

The authors are grateful to S.A. Korchagina for the GPC analyses. The structure of the obtained compounds was studied using the equipment of the Shared Research Center of the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences and the Center for Molecular Structure Studies of the Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences.

FUNDING

This work was supported by the Russian Foundation for Basic Research (project no. 16-33-60213), and carried out within the State Program of Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

REFERENCES

  1. 1.
    Olefin Metathesis and Metathesis Polymerization, Ed. by K. J. Ivin and J. C. Mol (Acad. Press, San Diego, 1997).Google Scholar
  2. 2.
    H. Otsuka, T. Muta, M. Sakada, T. Maeda, and A. Takahara, Chem. Commun. 2009, 1073 (2009).CrossRefGoogle Scholar
  3. 3.
    T. Maeda, S. Kamimura, T. Ohishi, A. Takahara, and H. Otsuka, Polymer 55, 6245 (2014).CrossRefGoogle Scholar
  4. 4.
    T. Ohishi, K. Suyama, S. Kamimura, M. S. K. Imato, S. Kawahara, A. Takahara, and H. Otsuka, Polymer 78, 145 (2015).CrossRefGoogle Scholar
  5. 5.
    S. Daniele, A. Mariconda, G. Guerra, P. Longo, and L. Giannin, Polymer 130, 143 (2017).CrossRefGoogle Scholar
  6. 6.
    M. R. Radlauer, M. E. Matta, and M. A. Hillmyer, Polym. Chem. 7, 6269 (2016).CrossRefGoogle Scholar
  7. 7.
    N. L. Wagner, F. J. Timmers, D. J. Arriola, G. Jueptner, and B. G. Landes, Macromol. Rapid Commun. 29, 1438 (2008).CrossRefGoogle Scholar
  8. 8.
    Yu. I. Denisova, M. L. Gringolts, A. S. Peregudov, L. B. Krentsel, E. A. Litmanovich, A. D. Litmanovich, E. Sh. Finkelshtein, and Y. V. Kudryavtsev, Beilstein J. Org. Chem. 11, 1796 (2015).CrossRefGoogle Scholar
  9. 9.
    M. L. Gringolts, Yu. I. Denisova, G. A. Shandryuk, L. B. Krentsel, A. D. Litmanovich, E. S. Finkelshtein, and Y. V. Kudryavtsev, RSC Adv. 5, 316 (2015).Google Scholar
  10. 10.
    Yu. I. Denisova, M. L. Gringolts, L. B. Krentsel’, G. A. Shandryuk, A. D. Litmanovich, E. Sh. Finkelshtein, and Ya. V. Kudryavtsev, Polym. Sci., Ser. B 58, 292 (2016).CrossRefGoogle Scholar
  11. 11.
    G. A. Shandryuk, Y. I. Denisova, M. L. Gringolts, L. B. Krentsel, A. D. Litmanovich, E. Sh. Finkelshtein, and Y. V. Kudryavtsev, Eur. Polym. J. 86, 143 (2017).CrossRefGoogle Scholar
  12. 12.
    Yu. I. Denisova, M. L. Gringolts, L. B. Krentsel’, G. A. Shandryuk, A. S. Peregudov, E. Sh. Finkelshtein, and Y. V. Kudryavtsev, Polym. Sci., Ser. B 59, 412 (2017).CrossRefGoogle Scholar
  13. 13.
    Y. I. Denisova, M. L. Gringolts, A. V. Roenko, G. A. Shandryuk, E. Sh. Finkelshtein, and Y. V. Kudryavtsev, Mendeleev Commun. 27, 416 (2017).CrossRefGoogle Scholar
  14. 14.
    Yu. I. Denisova, A. V. Roenko, M. L. Gringolts, L. B. Krentsel’, A. S. Peregudov, G. A. Shandryuk, E. Sh. Finkelshtein, and Ya. V. Kudryavtsev, Polym. Sci., Ser. B 60, 735 (2018).CrossRefGoogle Scholar
  15. 15.
    C. M. Bates and F. S. Bates, Macromolecules 50, 3 (2017).CrossRefGoogle Scholar
  16. 16.
    Y.-X. Lu, F. Tournilhac, L. Leibler, and Z. Guan, J. Am. Chem. Soc. 134, 8424 (2012).CrossRefGoogle Scholar
  17. 17.
    C. Descour, T. Macko, I. Schreur-Piet, and M. P. F. Pepels, R. Duchateau, RSC Adv. 5, 9658 (2015).Google Scholar
  18. 18.
    M. Bornand and P. Chen, Angew. Chem., Int. Ed. 44, 7909 (2005).CrossRefGoogle Scholar
  19. 19.
    N. Naga, G. Kikuchi, and A. Toyota, Polymer 47, 6081 (2006).CrossRefGoogle Scholar
  20. 20.
    A. J. Ultree, in Encyclopedia of Polymer Science and Engineering, Ed. by J. I. Kroschwitz (John Wiley and Sons, New York; Chichester, 1986), Vol. 6, p. 733.Google Scholar
  21. 21.
    J. E. Bolick and A. W. Jensen, in Kirk-Othmer Encyclopedia of Chemical Technology, Ed. by M. Howe-Grant (Wiley, New York, 1993), Vol. 10, p. 624.Google Scholar
  22. 22.
    A. G. Margaritis and N. K. Kalfoglou, Polym. J. 24, 1043 (1988).Google Scholar
  23. 23.
    K. Wang, G. Zhu, Y. Wang, and F. Ren, J. Appl. Polym. Sci. 132, 42045 (2015).Google Scholar
  24. 24.
    J. Karger-Kocsis and S. Kéki, Polymers 10, 34 (2018).CrossRefGoogle Scholar
  25. 25.
    U.S. Patent No. 4859746 (1989).Google Scholar
  26. 26.
    A. A. Morontsev, M. L. Gringolts, M. P. Filatova, and E. Sh. Finkelshtein, Polym. Sci., Ser. B 58, 695 (2016).CrossRefGoogle Scholar
  27. 27.
    T. J. Boyd and R. R. Schrock, Macromolecules 32, 6608 (1999).CrossRefGoogle Scholar
  28. 28.
    N. A. Belov, M. L. Gringolts, A. A. Morontsev, L. E. Starannikova, Yu. P. Yampolskii, and E. Sh. Finkelstein, Polym. Sci., Ser. B 59, 560 (2017).CrossRefGoogle Scholar
  29. 29.
    A. A. Morontsev, V. A. Zhigarev, R. Yu. Nikiforov, N. A. Belov, M. L. Gringolts, E. Sh. Finkelshtein, and Yu. P. Yampolskii, Eur. Polym. J. 99, 340 (2018).CrossRefGoogle Scholar
  30. 30.
    A. Muhlebach, P. A. van der Schaaf, and A. Hafner, “New Materials from Thermal and Photoinduced Ring Opening Metathesis Polymerisation (ROMP/PROMP),” in Ring Opening Metathesis Polymerisation and Related Chemistry, Ed. by E. Khosvari and T. Szymanska-Buzar (Springer, Dordrecht, 2002).Google Scholar
  31. 31.
    A. A. Morontsev, Yu. I. Denisova, M. L. Gringolts, M. P. Filatova, G. A. Shandryuk, E. Sh. Finkel’shtein, and Ya. V. Kudryavtsev, Polym. Sci., Ser. B 60, 688 (2018).CrossRefGoogle Scholar
  32. 32.
    A. Demonceau, A. W. Stumpf, E. Saive, and A. F. Noels, Macromolecules 30, 3127 (1997).CrossRefGoogle Scholar
  33. 33.
    M. A. Hillmyer, W. R. Laredo, and R. H. Grubbs, Macromolecules 28, 6311 (1995).CrossRefGoogle Scholar
  34. 34.
    A. W. Stumpf, E. Saive, A. Demonceau, and A. F. Noels, J. Chem. Soc., Chem. Commun., No. 11, 1127 (1995).Google Scholar
  35. 35.
    J. Wang, T. B. Kouznetsova, Z. S. Kean, L. Fan, B. D. Mar, T. J. Martínez, and S. L. Craig, J. Am. Chem. Soc. 136, 15162 (2014).CrossRefGoogle Scholar
  36. 36.
    S. Nakagawa, T. Tanaka, T. Ishizone, S. Nojima, K. Kamimura, K. Yamaguchi, and S. Nakahama, Polymer 55, 4394 (2014).CrossRefGoogle Scholar
  37. 37.
    T. R. Panthani and F. S. Bates, Macromolecules 48, 4529 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. V. Roenko
    • 1
    Email author
  • Yu. I. Denisova
    • 1
  • M. L. Gringolts
    • 1
  • A. S. Peregudov
    • 2
  • G. A. Shandryuk
    • 1
  • E. Sh. Finkelshtein
    • 1
  • Y. V. Kudryavtsev
    • 1
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  2. 2.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of SciencesMoscowRussia

Personalised recommendations