Advertisement

Polymer Science, Series C

, Volume 61, Issue 1, pp 65–75 | Cite as

Ruthenium–Carbene Complexes in the Synthesis of Polybutadiene and Its Cross-Metathesis with Polynorbornene

  • A. A. Morontsev
  • M. L. GringoltsEmail author
  • M. P. Filatova
  • A. S. Peregudov
  • T. R. Akmalov
  • S. M. Masoud
  • S. N. Osipov
  • Yu. I. Denisova
  • Y. V. Kudryavtsev
Article
  • 6 Downloads

Abstract

The activity of known and newly synthesized Ru-carbene catalysts in the metathesis polymerization of 1,5-cyclooctadiene and interchain cross-metathesis of synthesized polybutadiene with polynorbornenes is studied. First- and second-generation Grubbs Ru-complexes, second-generation Hoveyda–Grubbs complexes, and their modified analogs with asymmetric fluoro-containing ligands and unsaturated imidazolyl moieties are used as catalysts. It is shown that in the presence of the second-generation modified and nonmodified catalysts a partially crystalline polybutadiene is formed, in which blocks with trans-С=С bonds are about four times longer than blocks containing cis-С=С bonds. In the case of catalysts with bulkier ligands, the length of trans blocks is smaller and the melting temperature of the polymer is lower. The activities of the catalysts are compared by in situ 1Н NMR monitoring. New norbornene-butadiene multiblock copolymers are prepared for the first time by cross-metathesis between polybutadiene and polynorbornene. The highest degree of blockiness of the copolymers is attained when using second-generation Grubbs and Hoveyda–Grubbs catalysts. The activity sequences for the studied catalysts are constructed. It is shown that macromolecular cross-metathesis occurs more intensively in the presence of the catalysts with less bulky ligands.

Notes

ACKNOWLEDGMENTS

We are grateful to G.A. Shandryuk for DSC studies and A. Shafigulina for GPC measurements.

The structure of the synthesized compounds was studied with the equipment of the Center for Molecular Structure Studies, Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, and the Shared Research Center, Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

FUNDING

This work was supported by the Russian Foundation for Basic Research (project no. 17-03-00596) and carried out within the State Program of Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

REFERENCES

  1. 1.
    Olefin Metathesis and Metathesis Polymerization, Ed. by K. J. Ivin and J. C. Mol (Acad. Press, San Diego, 1997).Google Scholar
  2. 2.
    J. C. Mol, J. Mol. Catal. 213, 39 (2004).CrossRefGoogle Scholar
  3. 3.
    J. P. Claverie and R. Soula, Prog. Polym. Sci. 28, 619 (2003).CrossRefGoogle Scholar
  4. 4.
    M. A. Esteruelas, F. González, J. Herrero, P. Lucio, M. Oliván, and B. Ruiz-Labrador, Polym. Bull. 58, 923 (2007).CrossRefGoogle Scholar
  5. 5.
    J. Xu, A. Li, H. Wang, and Y. Shen, Adv. Mech. Eng. 8, 1 (2016).Google Scholar
  6. 6.
    C. Slugovc, in Olefin Metathesis: Theory and Practice, Ed. by K. Grela, (Wiley, New Jersey, 2014), p. 329.Google Scholar
  7. 7.
    S. Erkeçoğlu, A. D. Sezer, and S. Bucak, in Smart Drug Delivery System, Ed. by A. D. Sezer (IntechOpen, Rijeka, 2016), p. 396.Google Scholar
  8. 8.
    M. Yamazaki, J. Mol. Catal. A: Chem. 213, 81 (2004).CrossRefGoogle Scholar
  9. 9.
    Handbook of Metathesis, Ed. by R. H. Grubbs (Wiley-VCH, Weinheim, 2003), Vol. 3, p. 419.Google Scholar
  10. 10.
    Handbook of Metathesis, Ed. by R. H. Grubbs and E. Khosravi (Wiley-VCH, Weinheim, 2015), Vol. 3, p. 424.Google Scholar
  11. 11.
    Y. Chen, M. M. Abdellatif, and K. Nomura, Tetrahedron 74, 619 (2018).CrossRefGoogle Scholar
  12. 12.
    R. R. Schrock, Angew. Chem., Int. Ed. 45, 3748 (2006).CrossRefGoogle Scholar
  13. 13.
    R. H. Grubbs, Angew. Chem., Int. Ed. 45, 3760 (2006).CrossRefGoogle Scholar
  14. 14.
    O. M. Ogba, N. C. Warner, D. J. O’Leary, and R. H. Grubbs, Chem. Soc. Rev. 47, 4510 (2018).CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    N. K. Boaen and M. A. Hillmyer, Chem. Soc. Rev. 34, 267 (2005).CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Z.-L. Li, L. Sun, J. Ma, Z. Zen, and J. Hong, Polymer 84, 336 (2016).CrossRefGoogle Scholar
  17. 17.
    Y. Zhao and K. Zhang, Polym. Chem. 7, 4081 (2016).CrossRefGoogle Scholar
  18. 18.
    Y. Dong, J. B. Matson, and K. J. Edgar, Biomacromolecules 18, 1661 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    F. Sinclair, M. Alkattan, J. Prunet, and M. P. Shaver, Polym. Chem. 8, 3385 (2017).CrossRefGoogle Scholar
  20. 20.
    S. D. Morrison, R. M. J. Liskamp, and J. Prunet, Org. Lett. 20, 2253 (2018).CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    D. J. Lunn, E. H. Discekici, J. R. de Alaniz, W. R. Gutekunst, and C. J. Hawker, J. Polym. Sci., Part A: Polym. Chem. 55, 2903 (2017).CrossRefGoogle Scholar
  22. 22.
    T. J. Boyd and R. R. Schrock, Macromolecules 32, 6608 (1999).CrossRefGoogle Scholar
  23. 23.
    N. Trupej, Z. Novak, Ž. Knez, C. Slugovc, and S. Kovačič, J. CO2 Utiliz. 21, 336 (2017).Google Scholar
  24. 24.
    A. A. Morontsev, M. L. Gringolts, M. P. Filatova, and E. Sh. Finkelshtein, Polym. Sci., Ser. B 58, 695 (2016).CrossRefGoogle Scholar
  25. 25.
    B. J. Berron, P. A. Payne, and G. K. Jennings, Ind. Eng. Chem. Res. 47, 7707 (2008).CrossRefGoogle Scholar
  26. 26.
    J. Arend van Hensbergen, R. P. Burford, and A. B. Lowe, J. Polym. Sci., Part A: Polym. Chem. 51, 487 (2013).CrossRefGoogle Scholar
  27. 27.
    Yu. Zhao, J. Chen, W. Zhu, and Ke. Zhang, Polymer 74, 16 (2015).CrossRefGoogle Scholar
  28. 28.
    A. A. Morontsev, V. A. Zhigarev, R. Yu. Nikiforov, N. A. Belov, M. L. Gringolts, E. Sh. Finkelshtein, and Yu. P. Yampolskii, Eur. Polym. J. 99, 340 (2018).CrossRefGoogle Scholar
  29. 29.
    N. A. Belov, M. L. Gringolts, A. A. Morontsev, L. E. Starannikova, Yu. P. Yampolskii, and E. Sh. Finkelshtein, Polym. Sci., Ser. B 59, 560 (2017).CrossRefGoogle Scholar
  30. 30.
    N. L. Wagner, F. J. Timmer, D. J. Arriola, G. Jueptner, and B. G. Landes, Macromol. Rapid Commun. 29, 1438 (2008).CrossRefGoogle Scholar
  31. 31.
    H. Otsuka, T. Muta, M. Sakada, T. Maeda, and A. Takahara, Chem. Commun. 2009, 1073 (2009).CrossRefGoogle Scholar
  32. 32.
    T. Maeda, S. Kamimura, T. Ohishi, A. Takahara, and H. Otsuka, Polymer 55, 6245 (2014).CrossRefGoogle Scholar
  33. 33.
    T. Ohishi, K. Suyama, S. Kamimura, M. Sakada, K. Imato, S. Kawahara, A. Takahara, and H. Otsuka, Polymer 78, 145 (2015).CrossRefGoogle Scholar
  34. 34.
    M. R. Radlauer, M. E. Matta, and M. A. Hillmyer, Polym. Chem. 7, 6269 (2016).CrossRefGoogle Scholar
  35. 35.
    S. Daniele, A. Mariconda, G. Guerra, P. Longo, and L. Giannino, Polymer 130, 143 (2017).CrossRefGoogle Scholar
  36. 36.
    M. L. Gringolts, Yu. I. Denisova, G. A. Shandryuk, L. B. Krentsel, A. D. Litmanovich, E. Sh. Finkelshtein, and Y. V. Kudryavtsev, RSC Adv. 5, 316 (2015).Google Scholar
  37. 37.
    Yu. I. Denisova, M. L. Gringolts, L. B. Krentsel’, G. A. Shandryuk, A. D. Litmanovich, E. Sh. Finkelshtein, and Ya. V. Kudryavtsev, Polym. Sci., Ser. B 58, 292 (2016).CrossRefGoogle Scholar
  38. 38.
    M. L. Gringolts, Y. I. Denisova, E. Sh. Finkelshtein, and Y. V. Kudryavtsev, Beilstein J. Org. Chem. 15, 218 (2019).CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Yu. I. Denisova, M. L. Gringolts, A. S. Peregudov, L. B. Krentsel, E. A. Litmanovich, A. D. Litmanovich, E. Sh. Finkelshtein, and Y. V. Kudryavtsev, Beilstein J. Org. Chem. 11, 1796 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Y. I. Denisova, M. L. Gringolts, A. V. Roenko, G. A. Shandryuk, E. Sh. Finkelshtein, and Y. V. Kudryavtsev, Mendeleev Commun. 27, 416 (2017).CrossRefGoogle Scholar
  41. 41.
    G. A. Shandryuk, Y. I. Denisova, M. L. Gringolts, L. B. Krentsel, A. D. Litmanovich, E. Sh. Finkelshtein, and Y. V. Kudryavtsev, Eur. Polym. J. 86, 143 (2017).CrossRefGoogle Scholar
  42. 42.
    Yu. I. Denisova, M. L. Gringolts, L. B. Krentsel’, G. A. Shandryuk, A. S. Peregudov, E. Sh. Finkelshtein, and Y. V. Kudryavtsev, Polym. Sci., Ser. B 59, 412 (2017).CrossRefGoogle Scholar
  43. 43.
    R. M. E. Greene, K. J. Ivin, J. J. Rooney, J. Kress, and J. A. Osborn, Makromol. Chem. 189, 2797 (1988).CrossRefGoogle Scholar
  44. 44.
    F. Stelzer, Ch. Graiman, and K. Hummel, Colloid Polym. Sci. 260, 829 (1982).CrossRefGoogle Scholar
  45. 45.
    K. J. Ivin, G. Lapienisa, and J. J. Rooney, Makromol. Chem. 183, 9 (1982).CrossRefGoogle Scholar
  46. 46.
    S. Cetinkaya, S. Karabulut, and Y. Imamoğlu, Eur. Polym. J. 41, 467 (2005).CrossRefGoogle Scholar
  47. 47.
    X. Michel, S. Fouquay, G. Michaud, F. Simon, J.‑M. Brusson, P. Roquefort, T. Aubry, J.-F. Carpentier, and S. M. Guillaume, Polym. Chem. 8, 1177 (2017).CrossRefGoogle Scholar
  48. 48.
    T. R. Akmalov, S. M. Masoud, D. A. Petropavlovskikh, M. A. Zotov, S. E. Nefedov, and S. N. Osipov, Mendeleev Commun. 28, 609 (2018).CrossRefGoogle Scholar
  49. 49.
    S. M. Masoud, T. R. Akmalov, K. A. Palagin, F. M. Dolgushin, S. E. Nefedov, and S. N. Osipov, Eur. J. Org. Chem. 2018, 5988 (2018).CrossRefGoogle Scholar
  50. 50.
    V. Paradiso, Ch. Costabile, and F. Grisi, Beilstein J. Org. Chem. 14, 3122 (2018).CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    J. J. Van Veldhuizen, S. B. Garber, J. S. Kingsbury, and A. H. Hoveyda, J. Am. Chem. Soc. 124, 4954 (2002).CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    R. M. Thomas, B. K. Keitz, T. M. Champagne, and R. H. Grubbs, J. Am. Chem. Soc. 133, 7490 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    J. Hartung and R. H. Grubbs, J. Am. Chem. Soc. 135, 10183 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    S. M. Masoud, A. K. Mailyan, V. Dorcet, T. Roisnel, P. H. Dixneuf, C. Bruneau, and S. N. Osipov, Organometallics 34, 2305 (2015).CrossRefGoogle Scholar
  55. 55.
    A. A. Morontsev, Yu. I. Denisova, M. L. Gringolts, M. P. Filatova, G. A. Shandryuk, E. Sh. Finkel’shtein, and Ya. V. Kudryavtsev, Polym. Sci., Ser. B 60, 688 (2018).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Morontsev
    • 1
  • M. L. Gringolts
    • 1
    Email author
  • M. P. Filatova
    • 1
  • A. S. Peregudov
    • 2
  • T. R. Akmalov
    • 2
  • S. M. Masoud
    • 2
  • S. N. Osipov
    • 2
  • Yu. I. Denisova
    • 1
  • Y. V. Kudryavtsev
    • 1
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  2. 2.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of SciencesMoscowRussia

Personalised recommendations