Advertisement

Polymer Science, Series C

, Volume 61, Issue 1, pp 174–185 | Cite as

Synthesis of Pentablock Copolymers of the Mixed Linear-Brush Topology by Controlled Radical Polymerization and Ring-Opening Polymerization Reactions

  • A. V. KashinaEmail author
  • T. K. Meleshko
  • N. N. Bogorad
  • M. A. Bezrukova
  • A. V. Yakimanskii
Article
  • 19 Downloads

Abstract

Controlled atom-transfer radical polymerization and ring-opening polymerization methods are used for the first time to synthesize symmetric pentablock copolymers with a central block, which is a polymer brush with the polyimide backbone and poly(methyl methacrylate) side chains, and outer linear block copolymers of poly(ε-caprolactone) with poly(methyl methacrylate). The chemical structure of the polymers is studied by 1H NMR spectroscopy. The molecular weight characteristics of the synthesized pentablock copolymers are determined by multidetector size exclusion liquid chromatography. It is shown that these characteristics are in good agreement with the absolute molecular weights obtained by sedimentation-diffusion analysis.

Notes

FUNDING

This study was financed by a grant from the Government of the Russian Federation for State Support of Scientific Research Supervised by Leading Scientists (contract 14.W03.31.0022).

REFERENCES

  1. 1.
    C. Tsitsilianis, in Controlled and Living Polymerizations, Ed. by A. H. E. Müller and K. Matyjaszewski (Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, 2009), Chap. 9, p. 445.Google Scholar
  2. 2.
    L. Wang, J. Lin, and X. Zhang, Polymer 54, 3427 (2013).CrossRefGoogle Scholar
  3. 3.
    B. V. K. J. Schmidt and C. Barner-Kowollik, Nat. Chem. 5, 990 (2013).PubMedCrossRefGoogle Scholar
  4. 4.
    C. Tschierske, Chem. Soc. Rev. 36, 1930 (2007).PubMedCrossRefGoogle Scholar
  5. 5.
    T. Jiang, L. Wang, S. Lin, J. Lin, and Y. Li, Langmuir 27, 6440 (2011).PubMedCrossRefGoogle Scholar
  6. 6.
    J. F. Gohy, N. Willet, S. Varshney, J. X. Zhang, and R. Jérôme, Angew. Chem., Int. Ed. 40, 3214 (2001).CrossRefGoogle Scholar
  7. 7.
    Z. Ma, H. Yu, and W. Jiang, J. Phys. Chem. B 113, 3333.Google Scholar
  8. 8.
    W. Kong, W. Jiang, Y. Zhu, and B. Li, Langmuir 28, 11714 (2012).PubMedCrossRefGoogle Scholar
  9. 9.
    Y. Zhu, X. Yang, W. Kong, Y. Sheng, N. Yan, Soft Matter 8, 11156 (2012).CrossRefGoogle Scholar
  10. 10.
    F. Schacher, A. Walther, M. Ruppel, M. Drechsler, and A. H. E. Müller, Macromolecules 42, 3540 (2009).CrossRefGoogle Scholar
  11. 11.
    A. Laschewsky, Curr. Opin. Colloid Interface Sci. 8, 274 (2003).CrossRefGoogle Scholar
  12. 12.
    L. Wang and J. Lin, Soft Matter 7, 3383 (2011).CrossRefGoogle Scholar
  13. 13.
    H. von Berlepsch, C. Böttcher, K. Skrabania, and A. Laschewsky, Chem. Commun. 2009, 2290 (2009).CrossRefGoogle Scholar
  14. 14.
    K. Skrabania, H. von Berlepsch, C. Bottcher, and A. Laschewsky, Macromolecules 43, 271 (2010).CrossRefGoogle Scholar
  15. 15.
    Z. Li, M. A. Hillmyer, and T. P. Lodge, Langmuir 22, 9409 (2006).PubMedCrossRefGoogle Scholar
  16. 16.
    Z. Li, M. A. Hillmyer, and T. P. Lodge, Nano Lett. 6, 1245 (2006).PubMedCrossRefGoogle Scholar
  17. 17.
    Z. Li, E. Kesselman, Y. Talmon, M. A. Hillmyer, and T. P. Lodge, Science 306, 98 (2004).CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    N. Saito, C. Liu, T. P. Lodge, and M. A. Hillmyer, Macromolecules 41, 8815 (2008).CrossRefGoogle Scholar
  19. 19.
    T. I. Löbling, O. Borisov, J. S. Haataja, O. Ikkala, A. H. Gröschel, and A. H. E. Müller, Nat. Commun. 7, article no. 12097 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    A. H. Gröschel, F. H. Schacher, H. Schmalz, O. V. Borisov, E. B. Zhulina, A. Walther, and A. H. E. Müller, Nat. Commun. 3, article no. 710 (2012).PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    T. I. Lobling, O. Ikkala, A. H. Gröschel, and A. H. E. Müller, ACS Macro Lett. 5, 1044 (2016).CrossRefGoogle Scholar
  22. 22.
    N. Hadjichristidis, H. Iatrou, M. Pitsikalis, S. Pispas, and A. Avgeropoulos, Prog. Polym. Sci. 30, 725 (2005).CrossRefGoogle Scholar
  23. 23.
    F. Liu and A. Eisenberg, Angew. Chem., Int. Ed. 42, 1404 (2003).CrossRefGoogle Scholar
  24. 24.
    S. Subihara, S. Kanaoka, and S. Aoshima, J. Polym. Sci., Part A: Polym. Chem. 42, 2601 (2004).CrossRefGoogle Scholar
  25. 25.
    K. A. Davis and K. Matyjaszewski, Macromolecules 34, 2101 (2001).CrossRefGoogle Scholar
  26. 26.
    S. Kubowicz, J.-F. Baussard, J.-F. Lutz, A. F. Thune-mann, H. von Berlepsch, and A. Laschewsky, Angew. Chem., Int. Ed. 44, 5262 (2005).CrossRefGoogle Scholar
  27. 27.
    J. Rzayev and M. A. Hillmyer, Macromolecules 38, 3 (2005).CrossRefGoogle Scholar
  28. 28.
    D. Mecerreyes, B. Atthoff, K. A. Boduch, M. Trollsas, and J. L. Hedrick, Macromolecules 32, 5175 (1999).CrossRefGoogle Scholar
  29. 29.
    D. Gupta, A. K. Singh, N. Kar, A. Dravid, and J. Bellare, Mater. Sci. Eng. 98, 602 (2019).CrossRefGoogle Scholar
  30. 30.
    Y.-M. Ko, S.-W. Myung, and B.-H. Kim, J. Nanosci. Nanotechnol. 15, 6048 (2015).PubMedCrossRefGoogle Scholar
  31. 31.
    T. K. Meleshko, A. V. Kashina, N. N. Saprykina, S. V. Kostyuk, I. V. Vasilenko, P. A. Nikishev, and A. V. Yakimanskii, Russ. J. Appl. Chem. 90, 602 (2017).CrossRefGoogle Scholar
  32. 32.
    T. K. Meleshko, A. S. Ivanova, A. V. Kashina, I. V. Ivanov, T. N. Nekrasova, N. V. Zakharova, A. P. Filippov, and A. V. Yakimansky, Polym. Sci., Ser. B 59, 674 (2017).CrossRefGoogle Scholar
  33. 33.
    V. D. Pautov, T. N. Nekrasova, T. D. Anan’eva, T. K. Meleshko, I. V. Ivanov, and A. V. Yakimansky, J. Polym. Res. 25, 1 (2018).CrossRefGoogle Scholar
  34. 34.
    T. K. Meleshko, A. Yu. Pulyalina, N. S. Tyan, G. A. Polotskaya, I. V. Ivanov, N. V. Kukarkina, A. M. Toikka, and A. V. Yakimansky, Polym. Sci., Ser. B 59, 183 (2017).CrossRefGoogle Scholar
  35. 35.
    A. P. Filippov, A. S. Krasova, E. B. Tarabukina, A. V. Kashina, T. K. Meleshko, and A. V. Yakimansky, J. Polym. Res. 23, 1 (2016).CrossRefGoogle Scholar
  36. 36.
    A. P. Filippov, E. V. Belyaeva, N. V. Zakharova, A. S. Sasina, D. M. Ilgach, T. K. Meleshko, and A. V. Yakimansky, Colloid Polym. Sci. 293, 555 (2015).CrossRefGoogle Scholar
  37. 37.
    A. P. Filippov, E. V. Belyaeva, T. K. Meleshko, and A. V. Yakimansky, J. Polym. Sci., Part B: Polym. Phys. 52, 1539 (2014).CrossRefGoogle Scholar
  38. 38.
    T. K. Meleshko, D. M. Il’gach, N. N. Bogorad, N. V. Kukarkina, and A. V. Yakimansky, Polym. Sci., Ser. B 56, 118 (2014).CrossRefGoogle Scholar
  39. 39.
    A. V. Yakimansky, T. K. Meleshko, D. M. Ilgach, M. A. Bauman, T. D. Anan’eva, L. G. Klapshina, S. A. Lermontova, I. V. Balalaeva, and W. E. Douglas, J. Polym. Sci., Part A: Polym. Chem. 51, 4267 (2013).CrossRefGoogle Scholar
  40. 40.
    A. V. Yakimanskii, T. K. Meleshko, D. M. Il’gach, N. N. Bogorad, E. N. Vlasova, and T. D. Anan’eva, Russ. Chem. Bull. 61, 999 (2012).CrossRefGoogle Scholar
  41. 41.
    A. Krasova, E. Belyaeva, E. Tarabukina, A. Filippov, T. Meleshko, D. Ilgach, N. Bogorad, and A. Yakimansky, Macromol. Symp. 316, 32 (2012).CrossRefGoogle Scholar
  42. 42.
    D. M. Ilgach, T. K. Meleshko, and A. V. Yakimansky, Polym. Sci., Ser. C 57, 3 (2015).CrossRefGoogle Scholar
  43. 43.
    S. A. Klimova, O. A. Inozemtseva, S. V. German, D. A. Gorin, D. M. Ilgach, T. K. Meleshko, and A. V. Yakimansky, Prot. Met. Phys. Chem. Surf. 51, 396 (2015).CrossRefGoogle Scholar
  44. 44.
    A. S. Ivanova, N. V. Zakharova, A. P. Filippov, T. K. Meleshko, and A. V. Yakimansky, Polym. Sci., Ser. A 59, 281 (2017).CrossRefGoogle Scholar
  45. 45.
    T. K. Meleshko, D. M. Il’gach, N. N. Bogorad, N. V. Kukarkina, E. N. Vlasova, A. V. Dobrodumov, I. I. Malakhova, N. I. Gorshkov, V. D. Krasikov, and A. V. Yakimanskii, Polym. Sci., Ser. B 52, 589 (2010).CrossRefGoogle Scholar
  46. 46.
    A. P. Filippov, E. V. Belyaeva, A. S. Krasova, M. A. Simonova, E. B. Tarabukina, T. K. Meleshko, D. M. Ilgach, N. N. Bogorad, and A. V. Yakimansky, Polym. Sci., Ser. A 56, 1 (2014).CrossRefGoogle Scholar
  47. 47.
    A. P. Filippov, E. V. Belyaeva, A. S. Krasova, M. A. Simonova, T. K. Meleshko, D. M. Ilgach, N. N. Bogorad, A. V. Yakimansky, S. V. Larin, and A. A. Darinskii, Polym. Sci., Ser. A 56, 393 (2014).CrossRefGoogle Scholar
  48. 48.
    A. R. Ibragimova, A. B. Mirgorodskaya, E. A. Vasilieva, E. I. Khairutdinova, T. K. Meleshko, I. V. Ivanov, A. V. Yakimansky, I. R. Nizameev, M. K. Kadirov, and L. Y. Zakharova, Colloids Surf., A 526, 20 (2017).CrossRefGoogle Scholar
  49. 49.
    N. Y. Shilyagina, N. N. Peskova, S. A. Lermontova, A. A. Brilkina, V. A. Vodeneev, A. V. Yakimansky, L. G. Klapshina, and I. V. Balalaeva, J. Biophotonics 10, 1189 (2017).PubMedCrossRefGoogle Scholar
  50. 50.
    C. Liu, B. Liu, and M. B. Chan-Park, Polym. Chem. 8, 674 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. V. Kashina
    • 1
    Email author
  • T. K. Meleshko
    • 1
  • N. N. Bogorad
    • 1
  • M. A. Bezrukova
    • 1
  • A. V. Yakimanskii
    • 1
  1. 1.Institute of Macromolecular Compounds, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations