Advertisement

Polymer Science, Series C

, Volume 61, Issue 1, pp 17–30 | Cite as

Polymerization of Tricyclononenes

  • E. Sh. FinkelshteinEmail author
  • P. P. ChapalaEmail author
  • M. L. Gringolts
  • Yu. V. Rogan
Article
  • 15 Downloads

Abstract

The expansion of the range of available and reactive monomers allowing preparation of novel polymeric materials, is an actual task of polymer chemistry. This mini-review is devoted to the polymerization of tricyclo [4.2.1.02,5]non-7-enes (tricyclononenes) and tricyclo[4.2.1.02,5]nona-3,7-dienes (tricyclonona-dienes)–norbornene type monomers containing norbornene and cyclobutane or cyclobutene fragments in the molecules. Their synthesis is carried out using available cyclopentadiene or quadricyclane, which is a product of norbornadiene photo-isomerization. The features of ring-opening metathesis and addition polymerization of tricyclononenes with participation of double bond in the norbornene fragment are highlighted. Examples of the polymerization of a wide range of tricyclononenes with F-, Si-, O-, and N-containing substituents have demonstrated that they are noticeably more active monomers than norbornenes with the same substituents. The main successes have been achieved in the synthesis of F- and Si-substituted polytricyclononenes, which are promising materials for lithography and membrane gas separation.

Notes

ACKNOWLWDGMENTS

This work was conducted within the framework of State Assignment for the Institute of Petrochemical Synthesis, Russian Academy of Sciences.

REFERENCES

  1. 1.
    Olefin Metathesis and Metathesis Polymerization, Ed. by K. J. Ivin and J. C. Mol (Acad. Press, San Diego, 1997).Google Scholar
  2. 2.
    Handbook of Metathesis, Ed. by R. H. Grubbs (Wiley-VCH, Weinheim, 2003), Vol. 3.Google Scholar
  3. 3.
    M. R. Buchmeiser, in Synthesis of Polymers: New Structures and Methods, Ed. by A. D. Schlüter, C. J. Hawker, and J. Sakamoto (Wiley, Weinheim, 2012).Google Scholar
  4. 4.
    Handbook of Metathesis, Ed. by R. H. Grubbs and E. Khosravi, 2nd ed. (Wiley-VCH, Weinheim, 2015), Vol. 3.Google Scholar
  5. 5.
    E. Finkelshtein, M. Gringolts, M. Bermeshev, P. Chapala, and Yu. Rogan, “Polynorbornenes,” in Membrane Materials for Gas and Vapor Separation Synthesis and Application of Silicon-Containing Polymers, Ed. by Yu. Yampolskii and E. Finkelshtein (Wiley, Chichester, 2017), p. 143.Google Scholar
  6. 6.
    K. L. Makovetskii, Polym. Sci., Ser. C 50, 22 (2008).CrossRefGoogle Scholar
  7. 7.
    F. Blank and C. Janiak, Coord. Chem. Rev. 253, 827 (2009).CrossRefGoogle Scholar
  8. 8.
    M. V. Bermeshev and P. P. Chapala, Prog. Polym. Sci. 84, 1 (2018).CrossRefGoogle Scholar
  9. 9.
    A. M. Polyakova, A. F. Platé, M. A. Pryanishnikova, and N. A. Lipatnikov, Pet. Chem. 1, 521 (1961).Google Scholar
  10. 10.
    J. P. Kennedy and H. S. Makowski, J. Macromol. Sci., Chem. 1, 345 (1967).CrossRefGoogle Scholar
  11. 11.
    N. G. Gaylord, B. M. Mandal, and M. Martan, J. Polym. Sci: Polym. Lett. Ed. 14, 555 (1976).Google Scholar
  12. 12.
    N. G. Gaylord and A. B. Deshpande, J. Polym. Sci.: Polym. Lett. Ed. 14, 613 (1976).Google Scholar
  13. 13.
    N. G. Gaylord, A. B. Deshpande, B. M. Mandal, and M. Martan, J. Macromol. Sci, Chem. 11, 1053 (1977).CrossRefGoogle Scholar
  14. 14.
    E. S. Finkelshtein, M. V. Bermeshev, M. L. Gringolts, L. E. Starannikova, and Y. P. Yampolskii, Russ. Chem. Rev. 80, 341 (2011).CrossRefGoogle Scholar
  15. 15.
    I. F. A. F. El-Saafin and W. J. Feast, J. Mol. Catal. 15, 61 (1982).CrossRefGoogle Scholar
  16. 16.
    V. A. Petrov and N. V. Vasil’ev, Curr. Org. Synth. 3, 215 (2006).CrossRefGoogle Scholar
  17. 17.
    A. B. Alimuniar, J. H. Edwards, and W. J. Feast, J. Mol. Catal. 28, 313 (1985).CrossRefGoogle Scholar
  18. 18.
    R. S. Saunders, Macromolecules 28, 4347 (1995).CrossRefGoogle Scholar
  19. 19.
    P. P. Chapala, M. V. Bermeshev, L. E. Starannikova, I. L. Borisov, V. P. Shantarovich, V. G. Lakhtin, V. V. Volkov, and E. Sh. Finkelshtein, Macromol. Chem. Phys. 217, 1966 (2016).CrossRefGoogle Scholar
  20. 20.
    E. F. Connor, T. R. Younkin, J. I. Henderson, S. Hwang, R. H. Grubbs, W. P. Roberts, and J. J. Litzau, J. Polym. Sci., Part A: Polym. Chem. 40, 2842 (2002).CrossRefGoogle Scholar
  21. 21.
    A. E. Feiring, M.K. Crawford, W. B. Farnyam, R. H. French, K. W. Leffew, V. A. Petrov, F. L. Schadt, H. V. Tran, and F. C. Zumsteg, Macromolecules 39, 1443 (2006).CrossRefGoogle Scholar
  22. 22.
    H. V. Tran, R. J. Hung, T. Chiba, Sh. Yamada, T. Mrozek, Y.-T. Hsieh, C. R. Chambers, B. P. Osborn, B. C. Trinque, M. J. Pinnow, S. A. MacDonald, C. G. Willson, D. P. Sanders, E. F. Connor, R. H. Grubbs, and W. Conley, Macromolecules 35, 6539 (2002).CrossRefGoogle Scholar
  23. 23.
    D. P. Sanders, E. F. Connor, R. H. Grubbs, R. J. Hung, B. P. Osborn, T. Chiba, S. A. MacDonald, and C. G. Willson, Macromolecules 36, 1534 (2003).CrossRefGoogle Scholar
  24. 24.
    M. V. Bermeshev, A. V. Syromolotov, M. L. Gringolts, V. G. Lakhtin, and E. S. Finkelshtein, Tetrahedron Lett. 52, 6091 (2011).CrossRefGoogle Scholar
  25. 25.
    B. A. Bulgakov, M. V. Bermeshev, D. V. Demchuk, V. G. Lakhtin, A. G. Kazmin, and E. S. Finkelshtein, Tetrahedron 68, 2166 (2012).CrossRefGoogle Scholar
  26. 26.
    A. V. Syromolotov, M. V. Bermeshev, M. L. Gringolts, A. G. Kazmin, and E. S. Finkelshtein, Dokl. Chem. 437, 50 (2011).CrossRefGoogle Scholar
  27. 27.
    P. P. Chapala, M. V. Bermeshev, L. E. Starannikova, N. A. Belov, V. E. Ryzhikh, V. P. Shantarovich, V. G. Lakhtin, N. N. Gavrilova, Y. P. Yampolskii, and E. S. Finkelshtein, Macromolecules 48, 8055 (2015).CrossRefGoogle Scholar
  28. 28.
    V. R. Flid, M. L. Gringolts, R. S. Shamsiev, and E. Sh. Finkelshtein, Russ. Chem. Rev. 87, 1169 (2018).CrossRefGoogle Scholar
  29. 29.
    M. V. Bermeshev, A. V. Syromolotov, L. E. Starannikova, M. L. Gringolts, V. G. Lakhtin, Y. P. Yampolskii, and E. S. Finkelshtein, Macromolecules 46, 8973 (2013).CrossRefGoogle Scholar
  30. 30.
    M. V. Bermeshev, A. V. Syromolotov, M. L. Gringolts, L. E. Starannikova, Y. P. Yampolskii, and E. S. Finkelshtein, Macromolecules 44, 6637 (2011).CrossRefGoogle Scholar
  31. 31.
    E. S. Finkelshtein, M. L. Gringolts, N. V. Ushakov, V. G. Lakhtin, S. A. Soloviev, and Y. P. Yampol’skii, Polymer 44, 2843 (2003).CrossRefGoogle Scholar
  32. 32.
    E. S. Finkelshtein, K. L. Makovetskii, M. L. Gringolts, Y. V. Rogan, T. G. Golenko, V. G. Lakhtin, and M. P. Filatova, J. Mol. Catal. A: Chem. 257, 9 (2006).CrossRefGoogle Scholar
  33. 33.
    M. L. Gringolts, M. V. Bermeshev, K. L. Makovetsky, and E. S. Finkelshtein, Eur. Polym. J. 45, 2142 (2009).CrossRefGoogle Scholar
  34. 34.
    M. Gringolts, M. Bermeshev, Y. Yampolskii, L. Starannikova, V. Shantarovich, and E. Finkelshtein, Macromolecules 43, 7165 (2010).CrossRefGoogle Scholar
  35. 35.
    P. Chapala, M. Bermeshev, L. Starannikova, V. Shantarovich, N. Gavrilova, V. Lakhtin, Yu. Yampolskii, and E. Finkelshtein, Macromol. Chem. Phys. 218, 1600385 (2017).CrossRefGoogle Scholar
  36. 36.
    M. Bermeshev, B. Bulgakov, D. Demchuk, M. Filatova, L. Starannikova, and E. Finkelshtein, Polym. J. 45, 718 (2013).CrossRefGoogle Scholar
  37. 37.
    N. Belov, Yu. Nizhegorodova, M. Bermeshev, and Yu.Yampolskii, J. Membr. Sci. 483, 136 (2015).CrossRefGoogle Scholar
  38. 38.
    D. Alentiev, E. Egorova, M. Bermeshev, L. Starannikova, M. Topchiy, A. F. Asachenko, P. Gribanov, M. S. Nechaev, Y. Yampolskii, and E. Finkelshtein, J. Mater. Chem. A 2018, 19393 (2018).CrossRefGoogle Scholar
  39. 39.
    D. A. Alentiev, S. A. Korchagina, E. S. Finkelshtein, M. S. Nechaev, A. F. Asachenko, M. A. Topchiy, P. S. Gribanov, and M. V. Bermeshev, Russ. Chem. Bull. 67, 121 (2018).CrossRefGoogle Scholar
  40. 40.
    D. A. Alentiev, D. M. Dzhaparidze, P. P. Chapala, M. V. Bermeshev, N. A. Belov, R. Yu. Nikiforov, L. E. Starannikova, Yu. P. Yampolskii, and E. Sh. Finkelshtein, Polym. Sci., Ser. B 60, 612 (2018).CrossRefGoogle Scholar
  41. 41.
    D. A. Alentiev, P. P. Chapala, M. P. Filatova, E. S. Finkelshtein, and M. V. Bermeshev, Mendeleev Commun. 26, 530 (2016).CrossRefGoogle Scholar
  42. 42.
    M. V. Bermeshev, L. E. Starannikova, S. R. Sterlin, A. A. Tyutyunov, A. N. Tavtorkin, Y. P. Yampolskii, and E. S. Finkelshtein, Pet. Chem. 55, 753 (2015).CrossRefGoogle Scholar
  43. 43.
    I. L. Borisov, T. R. Akmalov, A. O. Ivanov, V. V. Volkov, E. S. Finkelshtein, and M. V. Bermeshev, Mendeleev Commun. 26, 124 (2016).CrossRefGoogle Scholar
  44. 44.
    G. O. Karpov, M. V. Bermeshev, I. L. Borisov, S. R. Sterlin, A. A. Tyutyunov, N. P. Yevlampieva, B. A. Bulgakov, V. V. Volkov, and E. Sh. Finkelshtein, Polymer 153, 626 (2018).CrossRefGoogle Scholar
  45. 45.
    M. Bermeshev, B. Bulgakov, L. Starannikova, G. Dibrov, P. Chapala, D. Demchuk, and Y. Yampolskii, J. Appl. Polym. Sci. 132, 41395 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  2. 2.Thomas Swan and Co. Ltd., Rotary WayConsettUK

Personalised recommendations