Polymer Science, Series C

, Volume 61, Issue 1, pp 120–133 | Cite as

Cyclododecene in Olefin Metathesis: Polymerization and Macromolecular Cross-Metathesis with Polynorbornene

  • Yu. I. DenisovaEmail author
  • V. A. Zhigarev
  • M. L. Gringolts
  • G. A. Shandryuk
  • A. S. Peregudov
  • E. Sh. Finkelshtein
  • Y. V. Kudryavtsev


The reaction of macromolecular cross-metathesis of polynorbornene and polydodecenamer catalyzed by the first-generation Grubbs Ru-carbene complex is studied for the first time. Polydodecenamer with high-molecular-weight characteristics (Mw = 406 × 103, Ð = 2.5) and a yield of 96% is synthesized by the ring-opening metathesis polymerization of cyclododecene mediated by the second-generation Grubbs catalyst. The polymer has a melting temperature of 62–83°C, depending on the content of trans double bonds, and shows poor solubility in organic solvents at room temperature. Its cross-metathesis with polynorbornene at 40°С gives rise to new statistical multiblock copolymers of norbornene and cyclododecene with different degree of blockiness. NMR, GPC, and DSC were used to investigate the effect of reaction conditions on the structure and thermal properties of the copolymers. At the initial step of the reaction, along with a high-molecular-weight peak, the GPC chromatograms exhibit a peak due to the low-molecular-weight fraction (M = (1–2) × 103), suggesting the formation of cyclooligomers. With increasing degree of interchain exchange, the proportion of the oligomeric fraction decreases appreciably. The kinetics of the cross-metathesis of polynorbornene with polydodecenamer and polyoctenamer at 40°С is studied by in situ 1Н NMR spectroscopy and ex situ 13С NMR spectroscopy. The rates of elementary reactions in these blends differ insignificantly, except for the conversion stage of the initial carbenes into polymer ones. The formation rate for carbene [Ru]=polyoctenamer is three times higher than the formation rate for the [Ru]=polydodecenamer carbene. In both cases, the fraction of Ru carbenes attached to norbornene units is extremely small throughout the process.



The structure of the synthesized compounds was studied using equipment of the Shared Research Center of the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, and the Center for Molecular Composition Studies of the Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences.


This study was supported by the Russian Science Foundation (project no. 17-73-10450).


  1. 1.
    V. Sh. Fel’dblyum, Synthesis and Application of Unsaturated Cyclic Hydrocarbons (Khimiya, Moscow, 1982) [in Russian].Google Scholar
  2. 2.
    US Patent No. 4.048.262 (1977).Google Scholar
  3. 3.
    L. M. Vardanyan, Y. V. Korshak, M. P. Peterina, and B. A. Dolgoplosk, Dokl. Akad. Nauk SSSR 207, 345 (1972).Google Scholar
  4. 4.
    E. Ceausescu, A. Cornilescu, E. Nicolescu, M. Popescu, S. Coca, M. Cuzmici, and V. Dragutan, J. Mol. Catal. 46, 415 (1988).CrossRefGoogle Scholar
  5. 5.
    S. Coca, M. Dimonie, V. Dragutan, R. Ion, L. Popescu, M. Teodorescu, F. Moise, and A. Vasilescu, J. Mol. Catal. 90, 101 (1994).CrossRefGoogle Scholar
  6. 6.
    S. Karabulut, S. Çetinkaya, B. Düz, and Y. Imamoğlu, Appl. Organomet. Chem. 18, 375 (2004).CrossRefGoogle Scholar
  7. 7.
    S. Ramakrishnan, Macromolecules 24, 3753 (1991).CrossRefGoogle Scholar
  8. 8.
    W. Panagiotis Dounis, J. Feast, and A. M. Kenwright, Polymer 36, 2787 (1995).CrossRefGoogle Scholar
  9. 9.
    V. I. Bykov, B. A. Belyaev, T. A. Butenko, and E. Sh. Finkel’shtein, Pet. Chem. 56, 62 (2016).CrossRefGoogle Scholar
  10. 10.
    M. F. Z. Lerum and W. Chen, Langmuir 27, 5403 (2011).PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    S. J. McLain, B. B. Sauer, and L. E. Firment, Macromolecules 29, 8211 (1996).CrossRefGoogle Scholar
  12. 12.
    C. Gascon, F. Lucas, S. Carlotti, and A. Deffieux, J. Appl. Polym. Sci. 118, 1830 (2010).Google Scholar
  13. 13.
    C. W. Lee, T.-L. Choi, and R. H. Grubbs, J. Am. Chem. Soc. 124, 3224 (2002).PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    J. Zhang, G. Li, and N. S. Sampson, ACS Macro Lett. 7, 1068 (2018).PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    M. L. Gringolts, Y. I. Denisova, E. Sh. Finkelshtein, and Y. V. Kudryavtsev, Beilstein J. Org. Chem. 15, 218 (2019).PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    H. Otsuka, T. Muta, M. Sakada, T. Maeda, and A. Takahara, Chem. Commun. 2009, 1073 (2009).CrossRefGoogle Scholar
  17. 17.
    T. Maeda, S. Kamimura, T. Ohishi, A. Takahara, and H. Otsuka, Polymer 55, 6245 (2014).CrossRefGoogle Scholar
  18. 18.
    T. Ohishi, K. Suyama, S. Kamimura, M. Sakada, K. Imato, S. Kawahara, A. Takahara, and H. Otsuka, Polymer 78, 145 (2015).CrossRefGoogle Scholar
  19. 19.
    M. R. Radlauer, M. E. Matta, and M. A. Hillmyer, Polym. Chem. 7 (40), 6269 (2016).CrossRefGoogle Scholar
  20. 20.
    C. Descour, T. Macko, I. Schreur-Piet, M. P. F. Pepels, and R. Duchateau, RSC Adv. 5, 9658 (2015).Google Scholar
  21. 21.
    M. L. Gringolts, Yu. I. Denisova, G. A. Shandryuk, L. B. Krentsel, A. D. Litmanovich, E. S. Finkelshtein, and Y. V. Kudryavtsev, RSC Adv. 5, 316 (2015).Google Scholar
  22. 22.
    Yu. I. Denisova, M. L. Gringolts, A. S. Peregudov, L. B. Krentsel, E. A. Litmanovich, A. D. Litmanovich, E. Sh. Finkelshtein, and Y. V. Kudryavtsev, Beilstein J. Org. Chem. 11, 1796 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Yu. I. Denisova, M. L. Gringolts, L. B. Krentsel’, G. A. Shandryuk, A. D. Litmanovich, E. Sh. Finkelshtein, and Y. V. Kudryavtsev, Polym. Sci., Ser. B 58, 292 (2016).CrossRefGoogle Scholar
  24. 24.
    G. A. Shandryuk, Yu. I. Denisova, M. L. Gringolts, L. B. Krentsel, A. D. Litmanovich, E. Sh. Finkelshtein, and Y. V. Kudryavtsev, Eur. Polym. J. 86, 143 (2017).CrossRefGoogle Scholar
  25. 25.
    R. Walker, R. M. Conrad, and R. H. Grubbs, Macromolecules 42, 599 (2009).PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    P. V. R. Schleyer, J. E. Williams, and K. R. Blanchard, J. Am. Chem. Soc. 92, 2377 (1970).CrossRefGoogle Scholar
  27. 27.
    A. Keller and E. Martuscelli, Makromol. Chem. 141, 189 (1971).CrossRefGoogle Scholar
  28. 28.
    A. Keller and E. Martuscelli, Makromol. Chem. 151, 169 (1972).CrossRefGoogle Scholar
  29. 29.
    E. Martuscelli and V. Vittoria, Polymer 13, 360 (1972).CrossRefGoogle Scholar
  30. 30.
    K. V. Werden and K. Holland-Moritz, Colloid Polym. Sci. 259, 731 (1981).CrossRefGoogle Scholar
  31. 31.
    C. Liu, H. Qin, and P. T. Mather, J. Mater. Chem. 17, 1543 (2007).CrossRefGoogle Scholar
  32. 32.
    E. S. Finkelshtein, M. V. Bermeshev, M. L. Gringolts, L. E. Starannikova, and Y. P. Yampolskii, Russ. Chem. Rev. 80, 341 (2011).CrossRefGoogle Scholar
  33. 33.
    G. Floros, N. Saragas, P. Paraskevopoulou, N. Psaroudakis, S. Koinis, M. Pitsikalis, N. Hadjichristidis, and K. Mertis, Polymers 4, 1657 (2012).CrossRefGoogle Scholar
  34. 34.
    K. J. Ivin and J. C. Mol, Olefin Metathesis and Metathesis Polymerization (Acad. Press, London, 1997).Google Scholar
  35. 35.
    M. Lichtenheldt, D. Wang, K. Vehlow, I. Reinhardt, C. Kuhnel, U. Decker, S. Blechert, and M. R. Buchmeiser, Chem.-Eur. J. 15, 9451 (2009).PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    V. Amir-Ebrahimi and J. J. Rooney, J. Mol. Catal. A: Chem. 208, 115 (2004).CrossRefGoogle Scholar
  37. 37.
    R. Wolovsky, J. Am. Chem. Soc. 92, 2132 (1970).CrossRefGoogle Scholar
  38. 38.
    V. M. Kuteinikov, Yu. V. Korshak, and B. A. Dolgoplosk, Tr. Mosk. Khim.-Tekhnol. Inst. 86, 117 (1975).Google Scholar
  39. 39.
    H. Höcker, W. Reimann, K. Riebel, and Z. Szentivanyi, Makromol. Chem. 177, 1707 (1976).CrossRefGoogle Scholar
  40. 40.
    D. A. Ben-Efraim and C. Batich, J. Am. Chem. Soc. 92, 2133 (1970).CrossRefGoogle Scholar
  41. 41.
    H. Höcker and R. Müsch, Macromol. Chem. 157, 201 (1972).CrossRefGoogle Scholar
  42. 42.
    H. Höcker and R. Müsch, Macromol. Chem. 175, 1395 (1974).CrossRefGoogle Scholar
  43. 43.
    H. Höcker, L. Reif, W. Reinmann, and K. Riebel, Recl. Trav. Chim. Pays-Bas 96, M47 (1977).Google Scholar
  44. 44.
    H. Höcker, J. Mol. Catal. 65, 95 (1991).CrossRefGoogle Scholar
  45. 45.
    L. Reif and H. Höcker, Macromolecules 17, 952 (1984).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Yu. I. Denisova
    • 1
    Email author
  • V. A. Zhigarev
    • 1
  • M. L. Gringolts
    • 1
  • G. A. Shandryuk
    • 1
  • A. S. Peregudov
    • 2
  • E. Sh. Finkelshtein
    • 1
  • Y. V. Kudryavtsev
    • 1
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  2. 2.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of SciencesMoscowRussia

Personalised recommendations