Polymer Science, Series C

, Volume 61, Issue 1, pp 86–101 | Cite as

Synthesis, Molecular, and Gas-Transport Properties of Homopolymers Based on 5-Ethylidene-2-norbornene and 5-Vinyl-2-norbornene

  • E. V. Bermesheva
  • A. I. Wozniak
  • I. L. Borisov
  • N. P. Yevlampieva
  • O. S. Vezo
  • G. O. Karpov
  • M. V. BermeshevEmail author
  • A. F. Asachenko
  • M. A. Topchiy
  • P. S. Gribanov
  • M. S. Nechaev
  • V. V. Volkov
  • E. Sh. Finkelshtein


Using the commercial derivative of norbornene—5-ethylidene-2-norbornene—a series of three isomeric homopolymers with different structure of the backbone is synthesized, and the effect of the chain structure on the gas-transport behavior of polynorbornenes is studied. The gas-transport characteristics of the polymers are presented together with data on the conformation properties of molecules of addition and metathesis polynorbornenes. The effect of the structure of side substituents on the equilibrium rigidity of addition polynorbornenes is confirmed by the example of poly(5-ethylidene-2-norbornene) and poly(5-vinyl-2-norbornene).



The study of the addition polymerization of bifunctional norbornenes and the characterization of the synthesized polymers were supported by the Russian Science Foundation (project no. 17-19-01595). Metathesis polymerization of 5-vinyl-2-norbornene and the study of properties of polymers based on it was carried out within the framework of the state task for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.


  1. 1.
    M. V. Bermeshev and P. P. Chapala, Prog. Polym. Sci. 84, 1 (2018).CrossRefGoogle Scholar
  2. 2.
    M. S. Trimmer, in Handbook of Metathesis, Ed. by R. R. Schrock (Wiley-VCH, Weinheim, 2008), p. 407.Google Scholar
  3. 3.
    N. G. Gaylord, A. B. Deshpande, B. M. Mandal, and M. Martan, J. Macromol. Sci., Chem. 11, 1053 (1977).CrossRefGoogle Scholar
  4. 4.
    M. V. Bermeshev, B. A. Bulgakov, A. M. Genaev, J. V. Kostina, G. N. Bondarenko, and E. S. Finkelshtein, Macromolecules 47, 5470 (2014).CrossRefGoogle Scholar
  5. 5.
    G. Khanarian and H. Celanese, Opt. Eng. 40, 1024 (2001).CrossRefGoogle Scholar
  6. 6.
    V. I. Bykov, K. L. Makovetskii, D. S. Popov, M. V. Bermeshev, T. A. Butenko, M. P. Filatova, and E. S. Finkel’shtein, Polym. Sci., Ser. B 54, 99 (2012).CrossRefGoogle Scholar
  7. 7.
    V. I. Bykov, K. L. Makovetskii, D. S. Popov, M. V. Bermeshev, T. A. Butenko, and Y. A. Talyzenkov, Dokl. Chem. 439, 227 (2011).CrossRefGoogle Scholar
  8. 8.
    D. Shamiryan, T. Abell, F. Iacopi, and K. Maex, Mater. Today 7, 34 (2004).CrossRefGoogle Scholar
  9. 9.
    N. R. Grove, P. A. Kohl, AllenS. A. Bidstrup, S. Jayaraman, and R. Shick, J. Polym. Sci., Part B: Polym. Phys. 37, 3003 (1999).CrossRefGoogle Scholar
  10. 10.
    A. A. Shutova, A. N. Trusov, M. V. Bermeshev, S. A. Legkov, M. L. Gringolts, E. S. Finkelstein, G. N. Bondarenko, and A. V. Volkov, Oil Gas Sci. Technol. 69, 1059 (2014).CrossRefGoogle Scholar
  11. 11.
    F. Blank and C. Janiak, Coord. Chem. Rev. 253, 827 (2009).CrossRefGoogle Scholar
  12. 12.
    P. Chapala, M. Bermeshev, L. Starannikova, V. Shantarovich, N. Gavrilova, V. Lakhtin, Y. Yampolskii, and E. Finkelshtein, Macromol. Chem. Phys. 218 (2017).
  13. 13.
    B. J. Sundell, IiiJ. A. Lawrence, D. J. Harrigan, J. T. Vaughn, T. S. Pilyugina, and D. R. Smith, RSC Adv. 6, 51619 (2016).CrossRefGoogle Scholar
  14. 14.
    D. A. Alentiev, E. S. Egorova, M. V. Bermeshev, L. E. Starannikova, M. A. Topchiy, A. F. Asachenko, P. S. Gribanov, M. S. Nechaev, Y. P. Yampolskii, and E. S. Finkelshtein, J. Mater. Chem. A 6, 19393 (2018).CrossRefGoogle Scholar
  15. 15.
    K. R. Gmernicki, E. Hong, C. R. Maroon, S. M. Mahurin, A. P. Sokolov, T. Saito, and B. K. Long, ACS Macro Lett. 5, 879 (2016).CrossRefGoogle Scholar
  16. 16.
    B.-G. Kang, D.-G. Kim, and R. A. Register, Macromolecules 51, 3702 (2018).CrossRefGoogle Scholar
  17. 17.
    D.-G. Kim, T. Takigawa, T. Kashino, O. Burtovyy, A. Bell, and R. A. Register, Chem. Mater. 27, 6791 (2015).CrossRefGoogle Scholar
  18. 18.
    S. Liu, Y. Chen, X. He, L. Chen, and W. Zhou, J. Appl. Polym. Sci. 121, 1166 (2011).CrossRefGoogle Scholar
  19. 19.
    F. Pierre, B. Commarieu, A. C. Tavares, and J. Claverie, Polymer 86, 91 (2016).CrossRefGoogle Scholar
  20. 20.
    J.-C. Daigle, V. Dube-Savoie, A. C. Tavares, and J. P. Claverie, J. Polym. Sci., Part A: Polym. Chem. 51, 2669 (2013).CrossRefGoogle Scholar
  21. 21.
    U. Okoroanyanwu, T. Shimokawa, J. Byers, and C. G. Willson, Chem. Mater. 10, 3319 (1998).CrossRefGoogle Scholar
  22. 22.
    H. V. Tran, R. J. Hung, T. Chiba, S. Yamada, T. Mrozek, Y.-T. Hsieh, C. R. Chambers, B. P. Osborn, B. C. Trinque, M. J. Pinnow, S. A. MacDonald, C. G. Willson, D. P. Sanders, E. F. Connor, R. H. Grubbs, and W. Conley, Macromolecules 35, 6539 (2002).Google Scholar
  23. 23.
    E. Finkelshtein, M. Gringolts, M. Bermeshev, P. Chapala, and Y. Rogan, “Polynorbornenes,” in Membrane Materials for Gas and Vapor Separation, Ed. by Yu. Yampolskii and E. Finkelstein (Wiley, Chichester, 2017), p. 143.Google Scholar
  24. 24.
    E. S. Finkelshtein, M. V. Bermeshev, M. L. Gringolts, L. E. Starannikova, and Y. P. Yampolskii, Russ. Chem. Rev. 80, 341 (2011).CrossRefGoogle Scholar
  25. 25.
    J. P. Kennedy and J. A. Hinlicky, Polymer 6, 133 (1965).CrossRefGoogle Scholar
  26. 26.
    N. Tunoglu and N. Balcioglu, Macromol. Rapid Commun. 20, 546 (1999).CrossRefGoogle Scholar
  27. 27.
    M. V. Bermeshev, B. A. Bulgakov, and E. S. Finkel’shtein, Dokl. Chem. 449, 83 (2013).CrossRefGoogle Scholar
  28. 28.
    E. L. Kolychev, A. F. Asachenko, P. B. Dzhevakov, A. A. Bush, V. V. Shuntikov, V. N. Khrustalev, and M. S. Nechaev, Dalton Trans. 42, 6859 (2013).PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    M. Macchione, J. C. Jansen, G. De Luca, E. Tocci, M. Longeri, and E. Drioli, Polymer 48, 2619 (2007).CrossRefGoogle Scholar
  30. 30.
    B. Chu, Laser Light Scattering: Basic Principles and Practice (Dover Publ. Inc., Mineola; New York, 2007).Google Scholar
  31. 31.
    W.-M. Kulicke and C. Clasen, Viscosimetry of Polymers and Polyelectrolytes (Springer, Berlin-Heidelberg, 2004).CrossRefGoogle Scholar
  32. 32.
    G. O. Karpov, E. V. Bermesheva, A. V. Zudina, A. F. Asachenko, L. I. Minaeva, M. A. Topchiy, P. S. Gribanov, M. S. Nechaev, and M. V. Bermeshev, Dokl. Chem. 479, 49 (2018).CrossRefGoogle Scholar
  33. 33.
    K. Endo, K. Fujii, and T. Otsu, Macromol. Chem. Phys. 197, 97 (1996).CrossRefGoogle Scholar
  34. 34.
    A. D. Hennis, J. D. Polley, G. S. Long, A. Sen, D. Yandulov, J. Lipian, G. M. Benedikt, L. F. Rhodes, and J. Huffman, Organometallics 20, 2802 (2001).CrossRefGoogle Scholar
  35. 35.
    B. Commarieu, J. Potier, M. Compaore, S. Dessureault, B. L. Goodall, X. Li, and J. P. Claverie, Macromolecules 49, 920 (2016).CrossRefGoogle Scholar
  36. 36.
    C.-T. Zhao, RibeiroM. Rosario, and M. F. Portela, J. Mol. Catal. A: Chem. 185 (1–2), 81 (2002).CrossRefGoogle Scholar
  37. 37.
    J. P. Kennedy and H. S. Makowski, J. Macromol. Sci., Chem. 1, 345 (1967).CrossRefGoogle Scholar
  38. 38.
    F. Blank, H. Scherer, and C. Janiak, J. Mol. Catal. A: Chem. 330, 1 (2010).CrossRefGoogle Scholar
  39. 39.
    L. Wang, X. Wang, M. Yang, Y. Wang, L. Li, B. Liu, and I. Kim, Macromol. Res. 19, 1071 (2011).CrossRefGoogle Scholar
  40. 40.
    D. A. Alentiev, S. A. Korchagina, E. S. Finkel’shtein, M. S. Nechaev, A. F. Asachenko, M. A. Topchiy, P. S. Gribanov, and M. V. Bermeshev, Russ. Chem. Bull. 67, 121 (2018).CrossRefGoogle Scholar
  41. 41.
    P. P. Chapala, I. L. Borisov, M. V. Bermeshev, V. V. Volkov, and E. S. Finkelshtein, Pet. Chem. 56, 1056 (2016).CrossRefGoogle Scholar
  42. 42.
    G. C. Vougioukalakis and R. H. Grubbs, Chem. Rev. (Washington, DC, U. S.) 110, 1746 (2010).CrossRefGoogle Scholar
  43. 43.
    R. R. Schrock, Handbook of Metathesis (Wiley-VCH, Weinheim, 2008).Google Scholar
  44. 44.
    K. Szwaczko, I. Czeluśniak, and K. Grela, J. Organomet. Chem. 847, 146 (2017).CrossRefGoogle Scholar
  45. 45.
    H. Balcar, T. Shinde, M. Lamač, J. Sedláček, and J. Zedník, J. Polym. Res 21, 557 (2014).CrossRefGoogle Scholar
  46. 46.
    J. Hakala, M. M. Hänninen, and A. Lehtonen, Inorg. Chem. Commun. 14, 1362 (2011).CrossRefGoogle Scholar
  47. 47.
    N. P. Yevlampieva, M. V. Bermeshev, A. V. Komolkin, O. S. Vezo, P. P. Chapala, and Y. V. Il’yasova, Polym. Sci., Ser. A 59, 473 (2017).CrossRefGoogle Scholar
  48. 48.
    N. P. Yevlampieva, M. V. Bermeshev, O. S. Vezo, P. P. Chapala, and Y. V. Il’yasova, Polym. Sci., Ser. A 60, 162 (2018).CrossRefGoogle Scholar
  49. 49.
    N. P. Yevlampieva, M. V. Bermeshev, A. S. Gubarev, P. P. Chapala, and M. A. Antipov, Polym. Sci., Ser. A 58, 324 (2016).CrossRefGoogle Scholar
  50. 50.
    H. Fujita, Polymer Solutions (Elsevier, Amsterdam, 1990).Google Scholar
  51. 51.
    N. P. Yevlampieva, M. L. Gringol’ts, I. I. Zaitseva, and E. I. Ryumtsev, Polym. Sci., Ser. C 52, 83 (2010).CrossRefGoogle Scholar
  52. 52.
    N. A. Belov, M. L. Gringol’ts, A. A. Morontsev, L. E. Starannikova, Y. P. Yampolskii, and E. S. Finkelstein, Polym. Sci., Ser. B 59, 560 (2017).CrossRefGoogle Scholar
  53. 53.
    E. S. Finkelshtein, K. L. Makovetskii, M. L. Gringolts, Y. V. Rogan, T. G. Golenko, L. E. Starannikova, Y. P. Yampolskii, V. P. Shantarovich, and T. Suzuki, Macromolecules 39, 7022 (2006).CrossRefGoogle Scholar
  54. 54.
    N. P. Yevlampieva, I. I. Zaitseva, M. L. Gringolts, P. P. Khlyabich, Y. V. Rogan, and E. I. Ryumtsev, Polym. Sci., Ser. A 50, 1082 (2008).CrossRefGoogle Scholar
  55. 55.
    N. Yevlampieva, M. Bermeshev, O. Vezo, P. Chapala, and Y. Il’yasova, J. Polym. Res. 25, article 162 (2018).CrossRefGoogle Scholar
  56. 56.
    W. Dujardin, C. Van Goethem, J. A. Steele, M. Roeffaers, I. F. J. Vankelecom, and G. Koeckelberghs, Polymers 11(4), 704 (2019).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. V. Bermesheva
    • 1
    • 2
  • A. I. Wozniak
    • 1
  • I. L. Borisov
    • 1
  • N. P. Yevlampieva
    • 3
  • O. S. Vezo
    • 3
  • G. O. Karpov
    • 1
  • M. V. Bermeshev
    • 1
    Email author
  • A. F. Asachenko
    • 1
  • M. A. Topchiy
    • 1
  • P. S. Gribanov
    • 1
  • M. S. Nechaev
    • 1
    • 4
  • V. V. Volkov
    • 1
  • E. Sh. Finkelshtein
    • 1
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  2. 2.Sechenov Moscow State Medical UniversityMoscowRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia
  4. 4.Faculty of Chemistry, Moscow State UniversityMoscowRussia

Personalised recommendations