Advertisement

Polymer Science, Series C

, Volume 61, Issue 1, pp 31–40 | Cite as

Promising Catalytic Processes of Dicyclopentadiene Metathesis Polymerization to Obtain a New Class of Polymeric and Polymer–Composite Materials

  • V. V. Afanas’evEmail author
  • T. M. Yumasheva
  • N. B. Bespalova
Article
  • 13 Downloads

Abstract

A lineup of highly efficient ruthenium catalysts with N-containing substituents in the benzylidene ligand is developed that differ in the rate of initiation of dicyclopentadiene metathesis polymerization. The choice of the optimal catalyst makes it possible to control the lifetime of the monomer–catalyst reaction mixture in a wide range, which makes the use of various technologies effective for the production of polymer and composite materials. The new catalysts have been used to design a series of innovative polymer and polymer-composite materials with a polymer matrix based on a finished monomer, dicyclopentadiene, which is a raw material of the petrochemical industry. The polymeric materials are distinguished by a unique combination of high mechanical properties and good thermal stability in a wide temperature range (from –60 to +320°C), which allows their use in various climatic zones. Composites with a matrix based on polydicyclopentadiene are not inferior to commercially available counterparts based on epoxy and polyester resins and even surpass them in a number of parameters.

REFERENCES

  1. 1.
    M. Kamada and T. Oshiki, J. Synth. Org. Chem., Jpn. 75, 111 (2017).CrossRefGoogle Scholar
  2. 2.
    R. H. Grubbs, Handbook of Metathesis (Willey-VCH, Weinheim, 2003), Vol. 1, Chap. 1.6, p. 61.CrossRefGoogle Scholar
  3. 3.
    J. C. Mol, J. Mol. Catal. A: Chem. 213, 39 (2004).CrossRefGoogle Scholar
  4. 4.
    Materia. Features&Benefits. Higher Performance Resins with Superior Processing Benefits. https://www.materia-inc.com/products/thermoset-resins/features-benefits. Cited 2019.Google Scholar
  5. 5.
    Y. Masuzaki, Y. Ohki, F. Tian, M. Kozako, and N. Kamei, IEEJ Trans. Fundam. Mater. 135, 82 (2015).CrossRefGoogle Scholar
  6. 6.
    K. Yoshida, M. Kozako, S. Ishibe, M. Hikita, and N. Kamei, IEEJ Trans. Fundam. Mater. 136, 324 (2016).CrossRefGoogle Scholar
  7. 7.
    Y. Masuzaki, Y. Ohki, and M. Kozako, in Proceedings of International Symposium on Electrical Insulating Materials, Niigata, Japan, 2014 (Niigata, 2014), p. 374.Google Scholar
  8. 8.
    D. B. Knorr, Jr., K. A. Masser, R. M. Elder, T. W. Sirk, M. D. Hindenlang, J. H. Yu, A. D. Richardson, S. E. Boyd, W. A. Spurgeon, and J. L. Lenhart, Compos. Sci. Technol. 114, 17 (2015).CrossRefGoogle Scholar
  9. 9.
    P. Y. Le Gac, D. Choqueuse, M. Paris, G. Recher, C. Zimmer, and D. Melot, Polym. Degrad. Stab. 98, 809 (2013).CrossRefGoogle Scholar
  10. 10.
    Y. Hu, A. W. Lang, X. Li, and S. R. Nutt, Polym. Degrad. Stab. 110, 464 (2014).CrossRefGoogle Scholar
  11. 11.
    K. A. M. Vallons, R. Drozdzak, M. Charret, S. V. Lomov, and I. Verpoest, Composites, Part A 78, 191 (2015).CrossRefGoogle Scholar
  12. 12.
    Y. Hu, X. Li, A. W. Lang, Y. Zhang, and S. R. Nutt, Polym. Degrad. Stab. 124, 35 (2016).CrossRefGoogle Scholar
  13. 13.
    V. J. Toplosky and R. P. Walsh, AIP Conf. Proc. 824, 219 (2006).CrossRefGoogle Scholar
  14. 14.
    S. Corral, S. Crane, A. R. Stephen, C. J. Cruce, and E. G. Flores, US Patent No. 9452568 (2016).Google Scholar
  15. 15.
    S. Corral, B. Edgecombe, P. W. Boothe, and M. A. Giardello, US Patent No. 9527982 (2016).Google Scholar
  16. 16.
    A. R. Stephen, C. J. Cruce, M. S. Trimmer, and M. A. Giardello, US Patent No. 10059857 (2017).Google Scholar
  17. 17.
    I. D. Robertson, M. Yourdkhani, P. J. Centellas, J. E. Aw, D. G. Ivanoff, E. Goli, E. M. Lloyd, L. M. Dean, N. R. Sottos, P. H. Geubelle, J. S. Moore, and S. R. White, Nature 557, 223 (2018).CrossRefGoogle Scholar
  18. 18.
    B. P. Warner and F. D. R. Thesauro, US Patent No. 20170251713 (2017).Google Scholar
  19. 19.
    N. B. Bespalova, D. N. Cheredilin, V. V. Afanas’ev, and D. B. Zemtsov, RF Patent No. 2462308 (2012).Google Scholar
  20. 20.
    N. B. Bespalova, V. V. Afanas’ev, A. V. Nizovtsev, and T. M. Dolgina, RF Patent No. 2375379 (2009).Google Scholar
  21. 21.
    V. V. Afanasiev, T. M. Dolgina, and N. B. Bespalova, EU Patent No. 2280033 (2014).Google Scholar
  22. 22.
    W. L. F. Armarego, Purification of Laboratory Chemicals (Butterworth-Heinemann, Amsterdam, 2017).Google Scholar
  23. 23.
    K. B. Polyanskii, V. V. Afanas’ev, N. A. Larionova, and N. B. Bespalova, RF Patent No. 2579116 (2016).Google Scholar
  24. 24.
    L. A. Ortiz-Frade, L. Ruiz-Ramırez, I. Gonzalez, A. Marın-Becerra, M. Alcarazo, J. G. Alvarado-Rodriguez, and R. Moreno-Esparza, Inorg. Chem. 42, 1825 (2003).CrossRefGoogle Scholar
  25. 25.
    D. B. Zemtsov, D. N. Cheredilin, V. V. Afanas’ev, and N. B. Bespalova, RF Patent No. 2559053 (2015).Google Scholar
  26. 26.
    T. M. Yumasheva, V. V. Afanasiev, O. V. Maslobojshchikova, E. V. Shutko, and N. B. Bespalova, EU Patent No. 2452958 (2012).Google Scholar
  27. 27.
    S. S. Lovkov, V. V. Afanas’ev, I. A. Kiselev, and N. B. Bespalova, RF Patent No. 2544549 (2015).Google Scholar
  28. 28.
    V. V. Afanasiev, S. A. Alkhimov, N. B. Bespalova, and E. V. Shutko, CAN Patent No. 2907862 (2016).Google Scholar
  29. 29.
    V. V. Afanasiev, S. A. Alkhimov, N. B. Bespalova, I. A. Kiselev, O. V. Maslobojshchikova, E. V. Shutko, and T. M. Yumasheva, CAN Patent No. 2907862 (2014).Google Scholar
  30. 30.
    V. V. Afanasiev, S. A. Alkhimov, N. B. Bespalova, I. A. Kiselev, O. V. Maslobojshchikova, E. V. Shutko, and T. M. Yumasheva, US Patent No. 9926487 (2018).Google Scholar
  31. 31.
    V. V. Afanasiev, S. A. Alkhimov, N. B. Bespalova, E.V. Shutko, and T. M. Yumasheva, US Patent No. 10053620 (2018).Google Scholar
  32. 32.
    V. V. Afanas’ev, S. A. Alkhimov, N. B. Bespalova, D. B. Zemtsov, O. V. Masloboishchikova, D. N. Cheredilin, and E. V. Shutko, RF Patent No. 2527278 (2014).Google Scholar
  33. 33.
    S. S. Lovkov, N. B. Bespalova, T. M. Yumasheva, V. V. Afanas’ev, O. V. Masloboishchikova, E. V. Shutko, I. A. Kiselev, and I. V. Saprunov, RF Patent No. 2596192 (2016).Google Scholar
  34. 34.
    SynFoam. http://synfoam.com/Products/SynFoam_AI. Cited 2019.Google Scholar
  35. 35.
    Akvasint. http://aquasint.ru/sph_pr.html. Cited 2019.Google Scholar
  36. 36.
    S. S. Lovkov, N. B. Bespalova, T. M. Yumasheva, V. V. Afanas’ev, O. V. Masloboishchikova, E. V. Shutko, I. A. Kiselev, and I. V. Saprunov, RF Patent No. 2579118 (2016).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. V. Afanas’ev
    • 1
    Email author
  • T. M. Yumasheva
    • 1
  • N. B. Bespalova
    • 1
  1. 1.OOO Joint Research and Development CenterMoscowRussia

Personalised recommendations