Polymer Science, Series C

, Volume 60, Supplement 1, pp 179–191 | Cite as

Multifunctional Containers from Anionic Liposomes and Cationic Polymers/Colloids

  • A. A. Yaroslavov
  • A. V. Sybachin
  • A. V. Sandzhieva
  • O. V. Zaborova


The study describes an “open” method for concentrating anionic bilayer lipid vesicles (liposomes) locally by electrostatically binding them in a complex with cationic polymers. This method is implemented by mixing premade solutions of liposomes and polymers, which significantly reduces the time and cost of obtaining multiliposomal complexes. Binding of liposomes with cationic linear polymers, latexes, and star polymers does not solve the problem of obtaining multiliposomal complexes: the size of such complexes cannot be controlled, and these variants fail to ensure the integrity of bound liposomes or result in complexes with a minimal amount of liposomes. The best results are demonstrated by complexes of anionic liposomes and polystyrene nanoparticles with grafted cationic chains (spherical polycationic brushes). Each brush can bind several dozen liposomes, which retain their integrity after being adsorbed on the surface of the brush. Such complexes do not dissociate into the initial components either in physiological saline with [NaCl] = 0.15 mol/L or in the presence of significant amounts of protein. The use of liposomes with different fillers (different liposomal “compartments”) makes it possible to obtain multiliposomal complexes with the desired fraction of substances encapsulated in the liposomes. The proposed approach is of interest in terms of obtaining multiliposomal complexes for concentration, compartmentalization, and subsequent controlled release of drugs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Wen, H. Jung, and X. Li, AAPS J. 17 (6), 1327 (2015).Google Scholar
  2. 2.
    I. M. Le-Deygen, A. A. Skuredina, and E. V. Kudryashova, Russ. J. Bioorg. Chem. 43 (5), 487 (2017).Google Scholar
  3. 3.
    E. D. Maximova, E. B. Faizuloev, A. A. Nikonova, S.L. Kotova, A. B. Solov’eva, V. A. Izumrudov, E. A. Litmanovich, E. V. Kudryashova, and N. S. Melik-Nubarov, Eur. Polym. J. 69, 110 (2015).Google Scholar
  4. 4.
    J. Trousil, S. K. Filippov, M. Hrubý, T. Mazel, Z. Syrová, D. Cmarko, S. Svidenská, J. Matějková, L. Kovácik, B. Porsch, R. Konefał, R. Lund, B. Nyström, I. Raška, and P. Štepánek, Nanomedicine 13, 307 (2017).Google Scholar
  5. 5.
    W. Lin, X. Zhang, L. Qian, N. Yao, Y. Pan, and L. Zhang, Macromolecules 18, 3869 (2017).Google Scholar
  6. 6.
    L. Yang, Z. Zhang, J. Hou, X. Jin, Z. Ke, D. Liu, M. Du, X. Jia, L. Yang, J. Hou, X. Jia, and H. Lv, Int. J. Nanomed. 12, 7653 (2017).Google Scholar
  7. 7.
    L. T. C. Tran, C. Gueutin, G. Frebourg, C. Burucoa, and V. Faivre, Biochem. Biophys. Res. Commun. 493, 146 (2017).Google Scholar
  8. 8.
    T. M. Allen and P. R. Cullis, Adv. Drug Delivery Rev. 65 (1), 36 (2013).Google Scholar
  9. 9.
    D. Pentak, Eur. Biophys. J. 45 (2), 175 (2016).Google Scholar
  10. 10.
    A. K. Thompson, A. Couchoud, and H. Singh, Dairy Sci. Technol. 89, 99 (2009).Google Scholar
  11. 11.
    A. Tiwari, A. Singh, N. Garg, and J. K. Randhawa, Sci. Rep. 7 (1), 12598 (2017).Google Scholar
  12. 12.
    S. P. Kuruvilla, G. Tiruchinapally, A. C. Crouch, M. E. H. El Sayed, and J. M. Greve, PLoS One 12 (8), e0181944 (2017).Google Scholar
  13. 13.
    K. Aoyama, S. Kuroda, T. Morihiro, N. Kanaya, T. Kubota, Y. Kakiuchi, S. Kikuchi, M. Nishizaki, S. Kagawa, H. Tazawa, and T. Fujiwara, Sci. Rep. 7 (1), 14177 (2017).Google Scholar
  14. 14.
    J. Y. Ljubimova, T. Sun, L. Mashouf, A. V. Ljubimov, L. L. Israel, V. A. Ljubimov, V. Falahatian, and E. Holler, Adv. Drug Delivery Rev. 113, 177 (2017).Google Scholar
  15. 15.
    M. Alipour and Z. E. Suntres, Ther. Delivery 5 (4), 409 (2014).Google Scholar
  16. 16.
    M. C. Leiva, R. Ortiz, R. Contreras-Cáceres, G. Perazzoli, I. Mayevych, J. M. López-Romero, F. Sarabia, J. M. Baeyens, C. Melguizo, and J. Prados, Sci. Rep. 7 (1), 13506 (2017).Google Scholar
  17. 17.
    R. Bazak, W. Hussein, M. Houri, S. E. Achy, T. Refaat, Mol. Clin. Oncol. 2 (6), 9 (2014).Google Scholar
  18. 18.
    K. O. Nag and V. Awasthi, Pharmaceutics 5 (4), 542 (2013).Google Scholar
  19. 19.
    S. Hirsjärvi, S. Dufort, G. Bastiat, P. Saulnier, C. Passirani, J.-L. Coll, and J.-P. Benoît, Acta Biomater. 9 (5), 6686 (2013).Google Scholar
  20. 20.
    T. Jiang, Z. Zhang, Y. Zhang, H. Lv, J. Zhou, C. Li, L. Hou, and Q. Zhang, Biomaterials 33 (36), 9246 (2012).Google Scholar
  21. 21.
    Y. Zheng, X. Liu, N. M. Samoshina, V. V. Samoshin, A. H. Franz, and X. Guo, Biochim. Biophys. Acta 1848 (1–2), 3113 (2015).Google Scholar
  22. 22.
    H. J. Yoon, H. S. Lee, J. H. Jung, H. K. Kim, and J. H. Park, ACS Appl. Mater. Interfaces (2018). (in press)Google Scholar
  23. 23.
    G. B. Khomutov, V. P. Kim, Y. A. Koksharov, K. V. Potapenkov, A. A. Parshintsev, E. S. Soldatov, N. N. Usmanov, A. M. Saletsky, A. V. Sybachin, A. A. Yaroslavov, I. V. Taranov, V. A. Cherepenin, and Y. V. Gulyaev, Colloids Surf., A 532, 26 (2017).Google Scholar
  24. 24.
    F. Haghiralsadat, G. Amoabediny, M. H. Sheikhha, B. Zandieh-Doulabi, S. Naderinezhad, M. N. Helder, and T. Forouzanfar, Chem. Biol. Drug. Des. 90, 368 (2017).Google Scholar
  25. 25.
    A. A. Yaroslavov, A. V. Sybachin, O. V. Zaborova, V. A. Migulin, V. V. Samoshin, M. Ballauff, E. Kesselman, J. Schmidt, Y. Talmon, and F. M. Menger, Nanoscale 7, 1635 (2015).Google Scholar
  26. 26.
    C. Sun, Y. Ding, L. Zhou, D. Shi, L. Sun, T. J. Webster, and Y. Shen, Nanomedicine 13 (8), 2605 (2017).Google Scholar
  27. 27.
    R. X. Zhang, H. L. Wong, H. Y. Xue, J. Y. Eoh, and X. Y. Wu, J. Controlled Release 240, 489 (2016).Google Scholar
  28. 28.
    U. Ishimoto, S. Kondo, A. Ohba, M. Sasaki, Y. Sakamoto, C. Morizane, H. Ueno, and T. Okusaka, Oncology 94, 72 (2018).Google Scholar
  29. 29.
    L. Tavano and R. Muzzalupo, Colloids Surf., B 147, 161 (2016).Google Scholar
  30. 30.
    Nano-Oncologicals. Advances in Delivery Science and Technology, Ed. by M. Alonso and M. Garcia-Fuentes (Springer, Cham, 2014).Google Scholar
  31. 31.
    S. A. A. Rizvi and A. M. Saleh, Saudi Pharm. J. 26, 64 (2018).Google Scholar
  32. 32.
    A. A. Yaroslavov, I. G. Panova, A. V. Sybachin, V. V. Spiridonov, A. B. Zezin, O. Mergel, A. Gelissen, R. Tiwari, F. Plamper, W. Richtering, and F. M. Menger, Nanomedicine 13 (4), 1491 (2017).Google Scholar
  33. 33.
    C. E. Pinguet, J. M. Hoffmann, A. A. Steinschulte, A. Sybachin, K. Rahimi, D. Wöll, A. Yaroslavov, W. Richtering, and F. A. Plamper, Polymer 121, 320 (2017).Google Scholar
  34. 34.
    A. V. Sybachin, A. A. Efimova, E. A. Litmanovich, F. M. Menger, and A. A. Yaroslavov, Langmuir 23 (20), 10034 (2007).Google Scholar
  35. 35.
    A. A. Yaroslavov, O. V. Zaborova, A. V. Sybachin, I. V. Kalashnikova, E. Kesselman, J. Schmidt, Y. Talmon, A. R. Rodriguez, and T. J. Deming, RSC Adv. 5 (119), 98687 (2015).Google Scholar
  36. 36.
    A. A. Yaroslavov, A. A. Efimova, A. V. Sybachin, S. N. Chvalun, A. Kulebyakina, and E. V. Kozlova, RSC Adv. 5 (40), 31460 (2015).Google Scholar
  37. 37.
    A. R. Patel, K. K. Kanazawa, and C. W. Frank, Anal. Chem. 81 (15), 6021 (2009).Google Scholar
  38. 38.
    K. P. Divya and V. Dharuman, Biosens. Bioelectron. 95, 168 (2017).Google Scholar
  39. 39.
    S. L. Hayward, D. M. Francis, M. J. Sis, and S. Kidambi, Sci. Rep. 5, 14683 (2015).Google Scholar
  40. 40.
    S. García-Jimeno, J. Estelrich, J. Callejas-Fernández, and S. Roldán-Vargas, Nanoscale 9 (39), 15131 (2017).Google Scholar
  41. 41.
    I. Takagi, H. Shimizu, and T. Yotsuyanagi, Chem. Pharm. Bull. 44 (10), 1941 (1996).Google Scholar
  42. 42.
    H. Chiang, Y.-C. Huang, H.-Y. Yeh, S.-Y. Yeh, and Y.-Y. Huang, Biomed. Eng.: Appl. Basis Commun. 21, 107 (2009).Google Scholar
  43. 43.
    M. Seo, A. Byun, J. Shim, H. S. Choi, Y. Lee, and J. W. Kim, Colloids Surf., B 146, 544 (2016).Google Scholar
  44. 44.
    M. van Elk, C. Lorenzato, B. Ozbakir, C. Oerlemans, G. Storm, J. F. W. Nijsen, R. H. R. Deckers, T. Vermonden, and W. E. Hennink, Eur. Polym. J. 72, 620 (2015).Google Scholar
  45. 45.
    L. Feng, M. C. Stuart, and Y. Adachi, Adv. Colloid Interface Sci. 226, 101 (2015).Google Scholar
  46. 46.
    J. Hierrezuelo, A. Sadeghpour, I. Szilagyi, A. Vaccaro, and M. Borkovec, Langmuir 26 (19), 15109 (2010).Google Scholar
  47. 47.
    A. A. Yaroslavov, T. A. Sitnikova, A. A. Rakhnyanskaya, E. G. Yaroslavova, A. V. Sybachin, N. S. Melik-Nubarov, and G. B. Khomutov, Colloid Polym. Sci. 295 (8), 1405 (2017).Google Scholar
  48. 48.
    S. Sennato, L. Carlini, D. Truzzolillo, and F. Bordi, Colloids Surf., B 137, 109 (2016).Google Scholar
  49. 49.
    A. A. Yaroslavov, A. A. Efimova, and A. V. Sybachin, Polym. Sci., Ser. A 51 (6), 638 (2009).Google Scholar
  50. 50.
    F. Bordi, C. Cametti, T. Gili, D. Gaudino, and S. Sennato, Bioelectrochemistry 59, 99 (2003).Google Scholar
  51. 51.
    A. A. Yaroslavov, A. A. Efimova, A. V. Sybachin, V. A. Izumrudov, V. V. Samoshin, I. I. Potemkin, Colloid J. 73 (3), 430 (2011).Google Scholar
  52. 52.
    A. A. Efimova, A. V. Sybachin, and A. A. Yaroslavov, Polym. Sci., Ser. C 53 (1), 89 (2011).Google Scholar
  53. 53.
    A. A. Yaroslavov, A. V. Sybachin, E. Kesselman, J. Schmidt, Y. Talmon, S. A. A. Rizvi, and F. M. Menger, J. Am. Chem. Soc. 133, 2881 (2011).Google Scholar
  54. 54.
    A. V. Sybachin, A. A. Yaroslavov, and L. A. Tsarkova, Biochemistry 4 (2), 240 (2010).Google Scholar
  55. 55.
    E. Reimhult, B. Kasemo, and F. Höök, Int. J. Mol. Sci. 10, 1683 (2009).Google Scholar
  56. 56.
    Y. Jing, H. Trefna, M. Persson, B. Kasemo, and S. Svedhem, Soft Matter 10, 187 (2014).Google Scholar
  57. 57.
    A. A. Yaroslavov, A. V. Sybachin, M. Schrinner, M. Ballauff, L. Tsarkova, E. Kesselman, J. Schmidt, Y. Talmon, and F. M. Menger, J. Am. Chem. Soc. 132, 5948 (2010).Google Scholar
  58. 58.
    F. A. Plamper, Ch. V. Synatschke, A. P. Majewski, A. Schmalz, H. Schmalz, and A. H. E. Müller, Polimery 59, 66 (2014).Google Scholar
  59. 59.
    A. A. Yaroslavov, A. V. Sybachin, O. V. Zaborova, D. V. Pergushov, A. B. Zezin, N. S. Melik-Nubarov, F. A. Plamper, A. H. E. Müller, and F. M. Menger, Macromol. Biosci. 14, 491 (2014).Google Scholar
  60. 60.
    Y. Mei, Y. Lu, F. Polzer, M. Ballauff, and M. Drechsler, Chem. Mater. 1062 (2007).Google Scholar
  61. 61.
    A. V. Sybachin, M. Ballauff, E. Kesselman, J. Schmidt, Y. Talmon, L. Tsarkova, F. M. Menger, and A. A. Yaroslavov, Langmuir 27, 5310 (2011).Google Scholar
  62. 62.
    A. V. Sybachin, O. V. Zaborova, M. M. Ballauff, E. Kesselman, J. Schmidt, Y. Talmon, F. M. Menger, and A. A. Yaroslavov, Langmuir 28, 16108 (2012).Google Scholar
  63. 63.
    A. A. Yaroslavov, A. V. Sybachin, O. V. Zaborova, A. B. Zezin, Y. Talmon, M. Ballauff, and F. M. Menger, Adv. Colloid Interface Sci. 226, 54 (2015).Google Scholar
  64. 64.
    A. V. Sandzhieva, A. V. Sybachin, O. V. Zaborova, M. Ballauff, and A. A. Yaroslavov, Mendeleev Comuun. 28, 326 (2018).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Yaroslavov
    • 1
  • A. V. Sybachin
    • 1
  • A. V. Sandzhieva
    • 1
  • O. V. Zaborova
    • 1
  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations