Advertisement

Polymer Science, Series C

, Volume 60, Supplement 1, pp 240–250 | Cite as

Polymeric and Low-Molecular Stabilizers for Au Nanoparticles in a Diblock Copolymer Matrix

  • Y. I. Derikov
  • C. Abetz
  • O. N. Karpov
  • G. A. Shandryuk
  • A. A. Ezhov
  • Y. V. Kudryavtsev
  • V. Abetz
Article

Abstract

An effect of several polymeric stabilizers on the composites based on a diblock copolymer of styrene and 2-vinyl pyridine and spherical Au nanoparticles has been studied. Among the tested substances were thiol-terminated polystyrene, thiol-terminated poly(2-vinyl pyridine), diblock copolymers of styrene with 2- and 4-vinyl pyridine, and decanethiol as a typical low molecular mass stabilizer. Thin composite films with a microphase-separated cylindrical morphology have been prepared and characterized by atomic force and scanning electron microscopy to describe the surface morphology and nanoparticle distribution in the block copolymer matrix. In all the cases, the nanoparticles were selectively positioned either within vinyl pyridine domains or at the domain boundaries. The most effective stabilization of Au nanoparticles, both regarding their location and prevention of aggregation, was provided by the diblock copolymers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Shimomura and T. Sawadaishi, Curr. Opin. Colloid Interface Sci. 6, 11 (2001).CrossRefGoogle Scholar
  2. 2.
    A. Biswas, I. S. Bayer, A. S. Biris, T. Wang, E. Dervishi, and F. Faupel, Adv. Colloid Interface Sci. 170, 2 (2012).CrossRefGoogle Scholar
  3. 3.
    D. J. Norris and M. G. Bawendi, Phys. Rev. B 53, 16338 (1996).CrossRefGoogle Scholar
  4. 4.
    E. Hutter and J. H. Fendler, Adv. Mater. 16, 1685 (2004).CrossRefGoogle Scholar
  5. 5.
    S. Seo, M. R. Gartia, and G.L. Liu, Nanoscale 6, 11795 (2014).CrossRefGoogle Scholar
  6. 6.
    L. Polavarapu, J. Perez-Juste, Q.-H. Xu, and L. M. Liz-Marzan, J. Mater. Chem. C 2, 7460 (2014).CrossRefGoogle Scholar
  7. 7.
    A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Hogele, F. C. Simmel, A. O. Govorov, and T. Liedl, Nature 483, 311 (2012).CrossRefGoogle Scholar
  8. 8.
    S. Zhang, G. Leem, L. Srisombat, and T. R. Lee, J. Am. Chem. Soc. 130, 113 (2008).CrossRefGoogle Scholar
  9. 9.
    M. Karg, N. Schelero, C. Oppel, M. Gradzielski, T. Hellweg, and R. von Klitzing, Chem.-Eur. J. 17, 4648 (2011).CrossRefGoogle Scholar
  10. 10.
    C. R. Bullen and P. Mulvaney, Nano Lett. 4, 2303 (2004).CrossRefGoogle Scholar
  11. 11.
    P. J. G. Goulet, G. R. Bourret, and R. B. Lennox, Langmuir 28, 2909 (2012).CrossRefGoogle Scholar
  12. 12.
    Z. Fan, M. K. Serrano, A. Schaper, S. Agarwal, and A. Greiner, Adv. Mater. 27, 3888 (2015).CrossRefGoogle Scholar
  13. 13.
    A. M. Alkilany, A. C. Caravana, M. A. Hamaly, K. T. Lerner, and L. B. Thompson, J. Colloid Interface Sci. 461, 39 (2016).CrossRefGoogle Scholar
  14. 14.
    A. A. Ezhov, Y. I. Derikov, G. A. Shandryuk, E. V. Chernikova, S. S. Abramchuk, A. S. Merekalov, G. N. Bondarenko, and R. V. Talroze, Polym. Sci., Ser. C 58, 102 (2016).CrossRefGoogle Scholar
  15. 15.
    A. A. Ezhov, Y. I. Derikov, E. V. Chernikova, S. S. Abramchuk, G. A. Shandryuk, A. S. Merekalov, V. I. Panov, and R. V. Talroze, Polymer 77, 113 (2015).CrossRefGoogle Scholar
  16. 16.
    Y. I. Derikov, I. Yu. Kutergina, G. A. Shandryuk, A. S. Merekalov, M. V. Gorkunov, S. S. Abramchuk, and A. A. Ezhov, Polym. Sci., Ser. A 56, 488 (2014).CrossRefGoogle Scholar
  17. 17.
    W. A. Lopes and H. M. Jaeger, Nature 414, 735 (2001).CrossRefGoogle Scholar
  18. 18.
    S. Singh, P. Samanta, R. Srivastava, A. Horechyy, U. Reuter, M. Stamm, H.-L. Chend, and B. Nandan, Phys. Chem. Chem. Phys. 19, 27651 (2017).CrossRefGoogle Scholar
  19. 19.
    B. K. Kuila, E. B. Gowd, and M. Stamm, Macromolecules 43, 7713 (2010).CrossRefGoogle Scholar
  20. 20.
    J. Q. Lu and S. S. Yi, Langmuir 22, 3951 (2006).CrossRefGoogle Scholar
  21. 21.
    B. J. Kim, J. Bang, C. J. Hawker, J. J. Chiu, D. J. Pine, S. G. Jang, S.-M. Yang, and E. J. Kramer, Langmuir 23, 12693 (2007).CrossRefGoogle Scholar
  22. 22.
    C. Mantzaridis and S. Pispas, Macromol. Rapid Commun. 29, 1793 (2008).CrossRefGoogle Scholar
  23. 23.
    S. G. Jang, E. J. Kramer, and C. J. Hawker, J. Am. Chem. Soc. 133, 16986 (2011).CrossRefGoogle Scholar
  24. 24.
    S. G. Jang, A. Khan, C. J. Hawker, and E. J. Kramer, Macromolecules 45, 1553 (2012).CrossRefGoogle Scholar
  25. 25.
    W. Lee, S. Y. Lee, X. Zhang, O. Rabin, and R. M. Briber, Nanotechnology 24, 045305 (2013).CrossRefGoogle Scholar
  26. 26.
    S. Chang, S. Singamaneni, E. Kharlampieva, S. L. Young, and V. V. Tsukruk, Macromolecules 42, 5781 (2009).CrossRefGoogle Scholar
  27. 27.
    Z. Liu, H. Huang, and T. He, Small 9, 505 (2013).CrossRefGoogle Scholar
  28. 28.
    E. B. Gowd, B. Nandan, M. K. Vyas, N. C. Bigall, A. Eychmueller, H. Schlorb, and M. Stamm, Nanotechnology 20, 415302 (2009).CrossRefGoogle Scholar
  29. 29.
    K. Tsutsumi, Y. Funaki, Y. Hirokawa, and T. Hashimoto, Langmuir 15, 5200 (1999).CrossRefGoogle Scholar
  30. 30.
    Y. V. Derikov, G. A. Shandryuk, R. V. Talroze, A. A. Ezhov, and Y. V. Kudryavtsev, Beilstein J. Nanotechnol. 9, 616 (2018).CrossRefGoogle Scholar
  31. 31.
    Y. I. Derikov, C. Abetz, G. A. Shandryuk, R. V. Talroze, A. A. Ezhov, V. Abetz, Y. V. Kudryavtsev, and M. A. Osipov, Polym. Sci., Ser. C 60, 78 (2018).CrossRefGoogle Scholar
  32. 32.
    E. K. Plyler and R. S. Mulliken, J. Am. Chem. Soc. 81, 823 (1959).CrossRefGoogle Scholar
  33. 33.
    X.-P. Qiu and F. M. Winnik, Macromolecules 40, 872 (2007).CrossRefGoogle Scholar
  34. 34.
    A. E. Saunders, M. B. Sigman, Jr., and B. A. Korgel, J. Phys. Chem. B 108, 193 (2004).CrossRefGoogle Scholar
  35. 35.
    E. B. Gowd, M. Böhme, and M. Stamm, IOP Conf. Ser.: Mater. Sci. Eng. 14, 012015 (2010).CrossRefGoogle Scholar
  36. 36.
    G. Singh, K. G. Yager, D.-M. Smilgies, M. M. Kulkarni, D. G. Bucknall, and A. Karim, Macromolecules 45, 7107 (2012).CrossRefGoogle Scholar
  37. 37.
    A. Knoll, R. Magerle, and G. Krausch, J. Chem. Phys. 120, 1105 (2004).CrossRefGoogle Scholar
  38. 38.
    B. J. Kim, G. H. Fredrickson, and E. J. Kramer, Macromolecules 41, 436 (2008).CrossRefGoogle Scholar
  39. 39.
    C. Liedel, K. A. Schindler, M. J. Pavan, C. Lewin, C. W. Pester, M. Ruppel, V. S. Urban, R. Shenhar, and A. Böker, Small 9, 3276 (2013).Google Scholar
  40. 40.
    J. Lee, J. Kwak, C. Choi, S. H. Han, and J. K. Kim, Macromolecules 50, 9373 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Y. I. Derikov
    • 1
  • C. Abetz
    • 2
  • O. N. Karpov
    • 1
  • G. A. Shandryuk
    • 1
  • A. A. Ezhov
    • 1
    • 3
  • Y. V. Kudryavtsev
    • 1
    • 4
  • V. Abetz
    • 2
    • 5
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Helmholtz-Zentrum Geesthacht, Institute of Polymer ResearchGeesthachtGermany
  3. 3.Faculty of PhysicsLomonosov Moscow State UniversityMoscowRussia
  4. 4.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  5. 5.Institute of Physical ChemistryUniversity of HamburgHamburgGermany

Personalised recommendations