Doklady Biochemistry and Biophysics

, Volume 488, Issue 1, pp 327–331 | Cite as

Expression of P-Type ATPases of Marine Green Microalga Dunaliella maritima under Hyperosmotic Salt Shock

  • D. E. Khramov
  • D. A. Matalin
  • I. V. Karpichev
  • Y. V. Balnokin
  • L. G. PopovaEmail author


Partial sequences of P-type ATPases were cloned from the marine microalgae Dunaliella maritima, two putative H+-ATPases (DmHA1 and DmHA2) and two putative Ca2+-ATPases (DmCA1 and DmCA2). The probable functions of the cloned proteins were suggested on the basis of their primary structure similarity with the proteins whose functions have been already characterized. The transcriptional response of the cloned D. maritima ATPase genes to a sharp increase in the NaCl concentration in the culture medium (from 100 to 500 mM) was investigated by quantitative RT-PCR. Hyperosmotic salt shock led to a significant increase in the DmHA2 expression and to a slight increase in the DmCA2 expression, whereas the expression of the two other ATPases, DmHA1 and DmCA1, was decreased. These data indicate that the DmHA2 ATPase is involved in maintenance of ion homeostasis in D. maritima cells under hyperosmotic salt shock.



This work was supported by the Russian Foundation for Basic Research (project no. 16-04-01544).


The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.


  1. 1.
    Bassil, E., Coku, A., and Blumwald, E., J. Exp. Bot., 2012, vol. 63, pp. 5727–5740.CrossRefGoogle Scholar
  2. 2.
    Scarborough, G.A., Curr. Opin. Cell Biol., 1999, vol. 11, pp. 517–522.CrossRefGoogle Scholar
  3. 3.
    Balnokin, Yu.V., Ionnyi gomeostaz i soleustoichivost’ rastenii. 70-e Timiryazevskoe chtenie (Ion Homeostasis and Salt Tolerance of Plants. 70th Timiryazev Memorial Lecture), Moscow: Nauka, 2012.Google Scholar
  4. 4.
    Popova, L.G. and Balnokin, Yu.V., Russ. J. Plant Physiol., 2013, vol. 60, no. 4, pp. 472–482.CrossRefGoogle Scholar
  5. 5.
    Oren, A., Saline Syst., 2005, vol. 1, pp. 1–14.CrossRefGoogle Scholar
  6. 6.
    Popova, L.G., Shumkova, G.A., Andreev, I.M., and Balnokin, Y.V., FEBS Lett., 2005, vol. 579, pp. 5002–5006.CrossRefGoogle Scholar
  7. 7.
    Popova, L.G., Belyaev, D.V., Shuvalov, A.V., Yurchenko, A.A., Matalin, D.A., Khramov, D.E., Orlova, Yu.V., and Balnokin, Yu.V., Mol. Biol. (Moscow), 2018, vol. 52, no. 4, pp. 520–531.CrossRefGoogle Scholar
  8. 8.
    Barrero-Gil, J., Garciadeblas, B., and Benito, B., J. Bioenerg. Biomembr., 2005, vol. 37, pp. 269–278.CrossRefGoogle Scholar
  9. 9.
    Balnokin, Y.V., Popova, L., and Myasoedov, N.A., Plant Physiol. Biochem., 1993, vol. 31, pp. C. 159–168.Google Scholar
  10. 10.
    De Vries, S., Hoge, H., and Bisseling, T., in Plant Molecular Biology Manual, Gelvin, S.B., Schilperoort, R.A., and Verma, D.P.S., Eds., Dordrecht, The Netherlands: Kluwer Acad. Publ., 1988, pp. 1–13.Google Scholar
  11. 11.
    Lin, H., Fang, L., Low, C.S., Chow, Y., and Lee, Y.K., FEBS J., 2013, vol. 280, pp. 1064–1072.CrossRefGoogle Scholar
  12. 12.
    Zakhozhii, I.G., Matalin, D.A., Popova, L.G., and Balnokin, Yu.V., Russ. J. Plant Physiol., 2012, vol. 59, no. 1, pp. 42–49.CrossRefGoogle Scholar
  13. 13.
    Balnokin, Y.V., Popova, L.G., and Gimmler, H., J. Plant Physiol., 1997, vol. 150, pp. 264–270.CrossRefGoogle Scholar
  14. 14.
    Katz, A., Bental, V., Degani, H., and Avron, M., Plant Physiol., 1991, vol. 96, pp. 110 – 115.CrossRefGoogle Scholar
  15. 15.
    Kaim, G. and Dimroth, P., Eur. J. Biochem., 1994, vol. 222, pp. 615–623.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. E. Khramov
    • 1
    • 2
  • D. A. Matalin
    • 1
  • I. V. Karpichev
    • 1
  • Y. V. Balnokin
    • 1
  • L. G. Popova
    • 1
    Email author
  1. 1.Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscowRussia
  2. 2.Faculty of Biology, Moscow State UniversityMoscowRussia

Personalised recommendations