Advertisement

Doklady Biochemistry and Biophysics

, Volume 485, Issue 1, pp 141–144 | Cite as

Neuroprotective Action of Amidic Neurolipins in Models of Neurotoxicity on the Culture of Human Neural-Like Cells SH-SY5Y

  • M. G. AkimovEmail author
  • A. M. Ashba
  • E. V. Fomina-Ageeva
  • N. M. Gretskaya
  • N. F. Myasoedov
  • V. V. Bezuglov
BIOCHEMISTRY, BIOPHYSICS, AND MOLECULAR BIOLOGY

Abstract

It was established that in neurodegeneration models in the human neuron-like cell line SH-SY5Y, amide derivatives of arachidonic and docosahexaenoic acids were inactive in experiments with MPP+ and CoCl2 but protected from H2O2. The protective activity of neurolipins decreased in the series DHA-DA > AA-SER ≥ AA-GLY > AA-GABA ≥ AA-EA and was manifested starting from a concentration of 0.5 nM.

Notes

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research (project no. 17-00-00105 and 17-00-00109).

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

REFERENCES

  1. 1.
    Pertwee, R.G., Endocannabinoids and their pharmacological actions, Handb. Exp. Pharmacol., 2015, vol. 231, pp. 1–37.CrossRefGoogle Scholar
  2. 2.
    Muthian, S., Rademacher, D.J., Roelke, C.T., Gross, G.J., and Hillard, C.J., Anandamide content is increased and CB1 cannabinoid receptor blockade is protective during transient, focal cerebral ischemia, Neuroscience, 2004, vol. 129, pp. 743–750.CrossRefGoogle Scholar
  3. 3.
    Sarne, Y. and Mechoulam, R., Cannabinoids: between neuroprotection and neurotoxicity, Curr. Drug Targets CNS Neurol. Disord., 2005, vol. 4, pp. 677–684.CrossRefGoogle Scholar
  4. 4.
    Sun, Y., Alexander, S.P., Garle, M.J., Gibson, C.L., Hewitt, K., Murphy, S.P., Kendall, D.A., and Bennett, A.J., Cannabinoid activation of PPAR alpha; a novel neuroprotective mechanism, Br. J. Pharmacol., 2007, vol. 152, pp. 734–743.CrossRefGoogle Scholar
  5. 5.
    Cohen-Yeshurun, A., Trembovler, V., Alexandrovich, A., Ryberg, E., Greasley, P.J., Mechoulam, R., Shohami, E., and Leker, R.R., N-Arachidonoyl-L-serine is neuroprotective after traumatic brain injury by reducing apoptosis, J. Cereb. Blood Flow Metab., 2011, vol. 31, pp. 1768–1777.CrossRefGoogle Scholar
  6. 6.
    Bobrov, M.Y., Lizhin, A.A., Andrianova, E.L., Gretskaya, N.M., Frumkina, L.E., Khaspekov, L.G., and Bezuglov, V.V., Antioxidant and neuroprotective properties of N-arachidonoyldopamine, Neurosci. Lett., 2008, vol. 431, pp. 6–11.CrossRefGoogle Scholar
  7. 7.
    Bobrov, M.Yu., Lyzhin, A.A., Andrianova, E.L., and Gretskaya, N.M., Antioxidant and neuroprotective properties of N-docosahexaenoyl dopamine, Bull. Exp. Biol. Med., 2006, vol. 142, no. 4, pp. 425–427.CrossRefGoogle Scholar
  8. 8.
    Kovalevich, J. and Langford, D., Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology, Methods Mol. Biol., 2013, vol. 1078, pp. 9–21.CrossRefGoogle Scholar
  9. 9.
    Bezuglov, V.V., Blazhenova, A.V., Andrianova, E.L., Akimov, M.G., Bobrov, M.Yu., Nazimov, I.V., Kisel’, M.A., Sharko, O.L., Novikov, A.V., Krasnov, N.V., Shevchenko, V.P., Shevchenko, K.V., V’yunova, T.V., and Myasoedov, N.F., Arachidonoyl amino acids and arachidonoyl peptides: synthesis and properties, Russ. J. Bioorg. Chem., 2006, vol. 32, no. 3, pp. 231–239.CrossRefGoogle Scholar
  10. 10.
    Akimov, M.G., Gretskaya, N.M., Zinchenko, G.N., and Bezuglov, V.V., Cytotoxicity of endogenous lipids N-acyl dopamines and their possible metabolic derivatives for human cancer cell lines of different histological origin, Anticancer Res., 2015, vol. 35, pp. 2657–2661.Google Scholar
  11. 11.
    Oesch, S. and Gertsch, J., Cannabinoid receptor ligands as potential anticancer agents—high hopes for new therapies?, J. Pharm. Pharmacol., 2009, vol. 61, pp. 839–853.Google Scholar
  12. 12.
    Godlewski, G., Offertaler, L., Wagner, J.A., and Kunos, G., Receptors for acylethanolamides-GPR55 and GPR119, Prostaglandins Other Lipid Mediat., 2009, vol. 89, pp. 105–111.CrossRefGoogle Scholar
  13. 13.
    McCue, J.M., Driscoll, W.J., and Mueller, G.P., In vitro synthesis of arachidonoyl amino acids by cytochrome c, Prostaglandins Other Lipid Mediat., 2009, vol. 90, pp. 42–48.CrossRefGoogle Scholar
  14. 14.
    McCue, J.M., Driscoll, W.J., and Mueller, G.P., Cytochrome c catalyzes the in vitro synthesis of arachidonoyl glycine, Biochem. Biophys. Res. Commun., 2008, vol. 365, pp. 322–327.CrossRefGoogle Scholar
  15. 15.
    Hu, S.S., Bradshaw, H.B., Benton, V.M., Chen, J.S., Huang, S.M., Minassi, A., Bisogno, T., Masuda, K., Tan, B., and Roskoski, R., Jr., et al., The biosynthesis of N-arachidonoyl dopamine (NADA), a putative endocannabinoid and endovanilloid, via conjugation of arachidonic acid with dopamine, Prostaglandins Leukot. Essent. Fatty Acids, 2009, vol. 81, pp. 291–301.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. G. Akimov
    • 1
    Email author
  • A. M. Ashba
    • 1
  • E. V. Fomina-Ageeva
    • 1
  • N. M. Gretskaya
    • 1
  • N. F. Myasoedov
    • 2
  • V. V. Bezuglov
    • 1
  1. 1.Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Molecular Genetics, Russian Academy of SciencesMoscowRussia

Personalised recommendations