Advertisement

Doklady Biochemistry and Biophysics

, Volume 485, Issue 1, pp 132–134 | Cite as

Natural Dicarbonyls Inhibit Peroxidase Activity of Peroxiredoxins

  • V. Z. LankinEmail author
  • M. G. Sharapov
  • R. G. Goncharov
  • A. K. Tikhaze
  • V. I. Novoselov
BIOCHEMISTRY, BIOPHYSICS, AND MOLECULAR BIOLOGY
  • 12 Downloads

Abstract

It was established that recombinant human peroxiredoxins (Prx1, Prx2, Prx4, and Prx6) inhibit natural dicarbonyls formed during free radical peroxidation of unsaturated lipids (malonic dialdehyde) and oxidative transformations of glucose (glyoxal and methylglyoxal). A possible role of the decrease in the activity of peroxiredoxins under oxidative and carbonyl stress is discussed as an important factor that triggers the molecular mechanisms of vascular wall damage in atherosclerosis and diabetes mellitus.

Notes

REFERENCES

  1. 1.
    Seo, M.S., Kang, S.W., Kim, K., et al., J. Biol. Chem., 2000, vol. 275, no. 27, pp. 20346–20354.CrossRefGoogle Scholar
  2. 2.
    Hofmann, B., Hecht, H.H., and Flohe, L., Biol. Chem., 2002, vol. 383, nos. 3–4, pp. 347–364.Google Scholar
  3. 3.
    Manevich, Y., Shuvaeva, T., Dodia, C., et al., Arch. Biochem. Biophys., 2009, vol. 485, pp. 139–149.CrossRefGoogle Scholar
  4. 4.
    Kinnula, V.L., Lehtonen, S., Kaarteenaho-Wiik, R., et al., Thorax, 2002, vol. 57, no. 2, pp. 157–64.CrossRefGoogle Scholar
  5. 5.
    Sharapov, M.G., Goncharov, R.G., Gordeeva, A.E., et al., Dokl. Biochem Biophys., 2016, vol. 471, no. 1, pp. 410–412.CrossRefGoogle Scholar
  6. 6.
    Lankin, V., Konovalova, G., Tikhaze, A., et al., Mol. Cell Biochem., 2014, vol. 395, nos. 1–2, pp. 241–252.CrossRefGoogle Scholar
  7. 7.
    Chapple, S.J., Cheng, X., and Mann, G.E., Redox Biol., 2013, vol. 1, no. 5, pp. 319–331.CrossRefGoogle Scholar
  8. 8.
    Lankin, V.Z., Shumaev, K.B., Tikhaze, A.K., and Kurganov, B.I., Dokl. Biochem. Biophys., 2017, vol. 475, no. 1, pp. 287–290.CrossRefGoogle Scholar
  9. 9.
    Sharapova, M.G., Penkova, N.V., Gudkov, S.V., Goncharov, R.G., Novoselov, V.I., and Fesenko, E.E., Biophysics, 2018, no. 2, pp. 17–24.Google Scholar
  10. 10.
    Kang, S.W., Baines, I.C., and Rhee, S.G., J. Biol. Chem., 1998, vol. 273, pp. 6303 – 6311.CrossRefGoogle Scholar
  11. 11.
    Wood, Z.A., Schroder, E., Robin, Harris J., and Poole, L.B., Trends Biochem. Sci., 2003, vol. 28, no. 1, pp. 32–40.CrossRefGoogle Scholar
  12. 12.
    Nelson, K.J., Perkins, A., Van Swearingen, A.E.D., et al., Antioxid. Redox Signal., 2018, vol. 28, no. 7, pp. 521–536.CrossRefGoogle Scholar
  13. 13.
    Lo, T.W.C., Westwood, M.E., McLellan, A.C., et al., J. Biol. Chem., 1994, vol. 269, pp. 32299–32305.Google Scholar
  14. 14.
    Zeng, J. and Davies, M.J., Chem. Res. Toxicol., 2006, vol. 19, no. 12, pp. 1668–1676.CrossRefGoogle Scholar
  15. 15.
    Okado-Matsumoto, A., Matsumoto, A., Fujii, J., and Taniguchi, N., J. Biochem., 2000, vol. 127, no. 3, pp. 493–501.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. Z. Lankin
    • 1
    Email author
  • M. G. Sharapov
    • 2
  • R. G. Goncharov
    • 2
  • A. K. Tikhaze
    • 1
  • V. I. Novoselov
    • 2
  1. 1.National Medical Research Center of Cardiology, Ministry of Healthcare of the Russian FederationMoscowRussia
  2. 2.Institute of Cell Biophysics, Russian Academy of SciencesPushchinoRussia

Personalised recommendations