Advertisement

Doklady Biochemistry and Biophysics

, Volume 483, Issue 1, pp 348–354 | Cite as

Diversification of the Homeotic AP3 Clade MADS-Box Genes in Asteraceae Species Chrysanthemum morifolium L. and Helianthus annuus L.

  • A. V. ShchennikovaEmail author
  • O. A. Shulga
  • K. G. Skryabin
Biochemistry, Biophysics, and Molecular Biology
  • 6 Downloads

Abstract

The structure and phylogeny of MADS-box genes HAM91 of sunflower (Helianthus annuus) and CDM115 of chrysanthemum (Chrysanthemum morifolium) were characterized. It is shown that these genes encode MADS-domain transcription factors, which are orthologs of TM6 (Solanum lycopersicum) and APETALA3 (Arabidopsis thaliana), respectively. We obtained two types of transgenic tobacco plants (Nicotiana tabacum) with constitutive expression of HAM91 and CDM115 genes. Both types of plants flowered later than the control plants and formed more flowers and seed pods. The weight of seeds of 35S::CDM115 plants was significantly lower than in the control and 35S::HAM91 plants, which may indicate to a change in the identity of ovules in 35S::CDM115.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Theißen, G., Melzer, R., and Rümpler, F., Development, 2016, vol. 143, no. 18, pp. 3259–3271.CrossRefGoogle Scholar
  2. 2.
    Samach, A., Kohalmi, S.E., Motte, P., Datla, R., and Haughn, G.W., Plant Cell, 1997, vol. 9, no. 4, pp. 559–570.CrossRefGoogle Scholar
  3. 3.
    Vandenbussche, M., Theissen, G., Van de Peer, Y., and Gerats, T., Nucleic Acids Res., 2003, vol. 31, no. 15, pp. 4401–4409.CrossRefGoogle Scholar
  4. 4.
    Yang, X., Wu, F., Lin, X., Du, X., Chong, K., Gramzow, L., Schilling, S., Becker, A., Theißen, G., and Meng, Z., PLoS One, 2012, vol. 7, no. 12. e51435.Google Scholar
  5. 5.
    Knowles, P.F., Morphology and anatomy, in Sunflower Science and Technology, Madison, W.I.: American Society of Agronomy, Crop Science of America, Soil Science Society of America, Inc., 1978, pp. 55–87.Google Scholar
  6. 6.
    Shchennikova, A.V., Shulga, O.A., Angenent, G.C., and Skryabin, K.G., Dokl. Biol. Sci., 2003, vol. 391, pp. 368–370.CrossRefGoogle Scholar
  7. 7.
    Shulga, O.A., Shchennikova, A.V., Angenent, G.C., and Skryabin, K.G., Russ. J. Dev. Biol., 2008, vol. 39, no. 1, pp. 2–5.CrossRefGoogle Scholar
  8. 8.
    Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S., Mol. Biol. Evol., 2013, vol. 30, no. 12, pp. 2725–2729.CrossRefGoogle Scholar
  9. 9.
    Shchennikova, A.V., Shulga, O.A., Immink, R., Skryabin, K.G., and Angenent, G.C., Plant Physiol., 2004, vol. 134, no. 4, pp. 1632–1641.CrossRefGoogle Scholar
  10. 10.
    Ai, Y., Zhang, C., Sun, Y., Wang, W., He, Y., and Bao, M., PLoS One, 2017, vol. 12, no. 1. e0169777.Google Scholar
  11. 11.
    Kaufmann, K., Melzer, R., and Theissen, G., Gene, 2005, vol. 347, no. 2, pp. 183–198.CrossRefGoogle Scholar
  12. 12.
    Goloveshkina, E.N., Shchennikova, A.V., Kamionskaya, A.M., Skryabin, K.G., and Shulga, O.A., Plant Cell Tiss. Organ Cult., 2012, vol. 109, no. 1, pp. 61–71.CrossRefGoogle Scholar
  13. 13.
    Jack, T., Fox, G.L., and Meyerowitz, E.M., Cell, 1994, vol. 76, no. 4, pp. 703–716.CrossRefGoogle Scholar
  14. 14.
    An, X., Ye, M., Wang, D., Wang, Z., Cao, G., Zheng, H., and Zhang, Z., Biotechnol. Lett., 2011, vol. 33, no. 6, pp. 1239–1247.CrossRefGoogle Scholar
  15. 15.
    Davies, B., Di Rosa, A., Eneva, T., Saedler, H., and Sommer, H., Plant J., 1996, vol. 10, no. 4, pp. 663–677.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. V. Shchennikova
    • 1
    Email author
  • O. A. Shulga
    • 1
    • 2
  • K. G. Skryabin
    • 1
  1. 1.Institute of Bioengineering, Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia
  2. 2.All-Russia Research Institute of Agricultural BiotechnologyMoscowRussia

Personalised recommendations