Advertisement

Doklady Biochemistry and Biophysics

, Volume 483, Issue 1, pp 341–343 | Cite as

Spermine Induces Autophagy in Plants: Possible Role of NO and Reactive Oxygen Species

  • S. A. Dmitrieva
  • A. A. Ponomareva
  • O. P. Gurjanov
  • A. B. Mazina
  • V. V. Andrianov
  • V. S. Iyudin
  • F. V. MinibayevaEmail author
Biochemistry, Biophysics, and Molecular Biology
  • 18 Downloads

Abstract

This is the first study to show that polyamine spermine, a low-molecular-weight nitrogen-containing compound, can induce autophagy in plants. This process is accompanied by an increased generation of reactive oxygen species and nitric oxide, which play a signal role and are required for triggering autophagy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moschou, P.N. and Roubelakis-Angelakis, K.A., J. Exp. Bot., 2014, vol. 65, no. 5, pp. 1285–1296.CrossRefGoogle Scholar
  2. 2.
    Gupta, K., Sengupta, A., Chakraborty, M., and Gupta, B., Front. Plant Sci., 2016, vol. 7, p. 1343.Google Scholar
  3. 3.
    Minois, N., Gerontology, 2014, vol. 60, no. 4, pp. 319–326.CrossRefGoogle Scholar
  4. 4.
    Morselli, E., Galluzzi, L., Kepp, O., Criollo, A., Maiuri, M.C., Tavernarakis, N., Madeo, F., and Kroemer, G., Aging (Albany NY), 2009, vol. 1, no. 12, pp. 961–970.CrossRefGoogle Scholar
  5. 5.
    Kuznetsov, Vl.V., Radyukina, N.L., and Shevyakova, N.I., Russ. J. Plant Physiol., 2006, vol. 53, no. 5, pp. 583–604.CrossRefGoogle Scholar
  6. 6.
    Wimalasekera, R., Tebartz, F., and Scherer, G.F., Plant Sci., 2011, vol. 181, no. 5, pp. 593–603.CrossRefGoogle Scholar
  7. 7.
    Dmitrieva, S.A., Ponomareva, A.A., Ryabovol, V.V., and Minibaeva, F.V., Biol. Membr., 2012, vol. 9, no. 4, pp. 267–275.Google Scholar
  8. 8.
    Minibayeva, F., Dmitrieva, S., Ponomareva, A., and Ryabovol, V., Plant Physiol. Biochem., 2012, vol. 59, pp. 11–19.CrossRefGoogle Scholar
  9. 9.
    Deiana, L., Carru, C., Pes, G., and Tadolini, B., Free Radic. Res., 1999, vol. 31, pp. 237–244.CrossRefGoogle Scholar
  10. 10.
    Viktorova L.V., Maksyutova, N.N., Trifonova, T.V., and Andrianov, V.V. Biochemistry (Moscow), 2010, vol. 75, pp. 95–100.CrossRefGoogle Scholar
  11. 11.
    Parzych, K.R. and Klionsky, D.J., Antioxid. Redox Signal., 2014, vol. 20, no. 3, pp. 460–473.CrossRefGoogle Scholar
  12. 12.
    Sagor, G.H., Chawla, P., Kim, D.W., Berberich, T., Kojima, S., Niitsu, M., and Kusano, T., Front. Plant Sci., 2015, vol. 10, no. 6, p. 687.Google Scholar
  13. 13.
    Madeo, F., Eisenberg, T., Pietrocola, F., and Kroemer, G., Science, 2018, vol. 359, pp. 63–74.CrossRefGoogle Scholar
  14. 14.
    Baena-González, E. and Hanson, J., Curr. Opin. Plant Biol., 2017, vol. 35, pp. 152–157.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • S. A. Dmitrieva
    • 1
  • A. A. Ponomareva
    • 1
  • O. P. Gurjanov
    • 1
  • A. B. Mazina
    • 1
  • V. V. Andrianov
    • 2
  • V. S. Iyudin
    • 2
    • 3
  • F. V. Minibayeva
    • 1
    • 3
    Email author
  1. 1.Kazan Institute of Biochemistry and BiophysicsFederal Research Center “Kazan Scientific Center of the Russian Academy of Sciences,”KazanRussia
  2. 2.Kazan Physical-Technical InstituteFederal Research Center “Kazan Scientific Center of the Russian Academy of Sciences,”KazanRussia
  3. 3.Kazan (Volga) Federal UniversityKazanRussia

Personalised recommendations