Advertisement

Doklady Biochemistry and Biophysics

, Volume 483, Issue 1, pp 333–336 | Cite as

Adaptation of Rodents Living in a Highland: Combination of Mitochondrial Introgression and Convergent Molecular Evolution

  • D. S. KostinEmail author
  • L. A. Lavrenchenko
Biochemistry, Biophysics, and Molecular Biology

Abstract

Populations of four species of narrow-headed rats of the genus Stenocephalemys were examined for the presence of a mutation in the mitochondrial cytochrome b gene resulting in an amino acid substitution in the translated protein. This substitution was also found in hamsters of the subfamily Sigmodontinae inhabiting the highlands of the Andes. Simulation of three-dimensional structure of the protein showed that this substitution is located in the active site and may have a functional significance. We assumed an independent emergence of this substitution in the populations of two Afroalpine species of Stenocephalemys, which is the first known example of a combination of introgression and convergent molecular evolution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fonseca, R.R., Johnson, W.E., O’Brien, S.J., et al., BMC Genomics, 2008, vol. 9, pp. 1–22.CrossRefGoogle Scholar
  2. 2.
    Melo-Ferreira, J., Boursot, P., Carneiro, M., et al., Syst. Biol., 2012, vol. 61, no. 3, pp. 367–381.CrossRefGoogle Scholar
  3. 3.
    Song, Y., Endepols, S., Klemann, N., et al., Curr. Biol., 2011, vol. 21, pp. 1296–1301.CrossRefGoogle Scholar
  4. 4.
    Bryja, J., Kostin, D., Meheretu, Y., et al., Mol. Phylogenet. Evol., 2018, vol. 118, pp. 75–87.CrossRefGoogle Scholar
  5. 5.
    Boratynski, Z., Melo-Ferreira, J., Alves, P.C., et al., Heredity, 2014, vol. 113, no. 4, pp. 277–286.CrossRefGoogle Scholar
  6. 6.
    Zakon, H.H., Lu, Y., Zwickl, D.J., and Hillis, D.M., Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, pp. 3675–3680.CrossRefGoogle Scholar
  7. 7.
    Castoea, T.A., Jason de Koninga, A.P., et al., Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, pp. 8986–8991.CrossRefGoogle Scholar
  8. 8.
    Liu, Y., Cotton, J.A., Shen, B., et al., Curr. Biol., 2010, vol. 20, no. 2, pp. R53–R54.CrossRefGoogle Scholar
  9. 9.
    Lavrenchenko, L.A. and Verheyen, E., Russ. J. Genet., 2006, vol. 42, no. 4, pp. 439–446.CrossRefGoogle Scholar
  10. 10.
    Tamura, K., Stecher, G., Peterson, D., et al., Mol. Biol. Evol., 2013, vol. 30, pp. 2725–2729.CrossRefGoogle Scholar
  11. 11.
    Zhang, Y., BMC Bioinformatics, 2008, vol. 9, p. 40.CrossRefGoogle Scholar
  12. 12.
    Guex, N. and Peitsch, M.C., Electrophoresis, 1997, vol. 18, no. 15, pp. 2714–2723.CrossRefGoogle Scholar
  13. 13.
    Kolling, D.R.J., Samoilova, R.I., Holland, J.T., et al., J. Biol. Chem., 2003, vol. 278, pp. 39747–39754.CrossRefGoogle Scholar
  14. 14.
    Potapov, S.G., Illarionova, N.A., Andreeva, T.A., et al., Dokl. Biol. Sci., 2007, vol. 417, pp. 435–438.CrossRefGoogle Scholar
  15. 15.
    Lecompte, E., Aplin, K., Denys, C., et al., BMC Evol. Biol., 2008, vol. 8, no. 199, pp. 1–21.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia
  2. 2.Koltzov Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations