Advertisement

Doklady Biochemistry and Biophysics

, Volume 483, Issue 1, pp 321–325 | Cite as

The Influence of the Number of Conjugated Double Bonds in Carotenoid Molecules on the Energy Transfer Efficiency to Bacteriochlorophyll in Light-Harvesting Complexes LH2 from Allochromatium vinosum Strain MSU

  • A. A. AshikhminEmail author
  • Z. K. Makhneva
  • M. A. Bolshakov
  • A. A. Moskalenko
Biochemistry, Biophysics, and Molecular Biology
  • 16 Downloads

Abstract

Seven different carotenoids with the number of conjugated double bonds (N) from 5 to 11 were incorporated in vitro into carotenoidless complexes LH2 of the sulfur bacterium Allochromatium vinosum strain MSU. The efficiency of their incorporation varied from 4 to 99%. The influence of N in the carotenoid molecules on the energy transfer efficiency from these pigments to bacteriochlorophyll (BChl) in the modified LH2 complexes was studied for the first time. The highest level of energy transfer was recorded for rhodopin (N = 11) and neurosporene (N = 7) (37 and 51%, respectively). In the other carotenoids, this parameter ranged from 11 to 33%. In the LH2 complexes studied, we found no direct correlation between the decrease in N in carotenoids and increase in the energy transfer efficiency from these pigments to BChl.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gabrielsen, M., Gardiner, A.T., and Cogdell, R.J., Peripheral complexes of purple bacteria, in The Purple Phototrophic Bacteria, Daldal, F., Thurnauer, M.C., Beatty, J.T., and Hunter, C.N., Eds., New York: Springer, 2009, pp. 135–153.CrossRefGoogle Scholar
  2. 2.
    Löhner, A., Carey, A.M., Hacking, K., Picken, N., Kelly, S., Cogdell, R., and Köhler, J., The origin of the split B800 absorption peak in the LH2 complexes from Allochromatium vinosum, Photosynth. Res., 2015, vol. 123, pp. 23–31.CrossRefGoogle Scholar
  3. 3.
    Frank H.A., Polivka T. Energy transfer from carotenoids to bacteriochlorophylls, in The Purple Phototrophic Bacteria, Daldal, F., Thurnauer, M.C., Beatty, J.T., and Hunter, C.N., Eds., New York: Springer, 2009, pp. 213–230.CrossRefGoogle Scholar
  4. 4.
    Niedzwiedzki, D.M., Fuciman, M., Kobayashi, M., Frank, H.A., and Blankenship, R.E., Ultra-fast time-resolved spectroscopy of the light-harvesting complex 2 (LH2) from the photosynthetic bacterium Thermochromatium tepidum, Photosynth. Res., 2011, vol. 110, pp. 49–60.CrossRefGoogle Scholar
  5. 5.
    Hashimoto, H., Sugai, Y., Uragami, C., Gardiner, A.T., and Cogdell, R.J., Natural and artificial light-harvesting systems utilizing the functions of carotenoids, J. Photochem. Photobiol. C: Photochem. Rev., 2015, vol. 25, pp. 46–70.CrossRefGoogle Scholar
  6. 6.
    Toropygina, O.A., Makhneva, Z.K., and Moskalenko, A.A., Reconstitution of okenone into light harvesting complexes from Allochromatium minutissimum, Biochemistry (Moscow), 2005, vol. 70, no. 11, pp. 1231–1237.CrossRefGoogle Scholar
  7. 7.
    Loach, P.A. and Parkes-Loach, P.S., Structure–function relationships in bacterial light-harvesting complexes investigated by reconstitution techniques, in The Purple Phototrophic Bacteria, Daldal, F., Thurnauer, M.C., Beatty, J.T., and Hunter, C.N., Eds., New York: Springer, 2009, pp. 181–198.CrossRefGoogle Scholar
  8. 8.
    Ashikhmin, A., Makhneva, Z., Bolshakov, M., and Moskalenko, A., Incorporation of spheroidene and spheroidenone into light-harvesting complexes from purple sulfur bacteria, J. Photochem. Photobiol. B: Biol., 2017, vol. 170, pp. 99–107.CrossRefGoogle Scholar
  9. 9.
    Kondrat’eva, E.N., Fotosinteziruyushchie bakterii (Photosynthetic Bacteria), Moscow: Akad. Nauk SSSR, 1963.Google Scholar
  10. 10.
    Moskalenko, A.A. and Makhneva, Z.K., Light-harvesting complexes from purple sulfur bacteria Allochromatium minutissimum assembled without carotenoids, J. Photochem. Photobiol. B, 2012, vol. 108, pp. 1–7.CrossRefGoogle Scholar
  11. 11.
    Moskalenko, A.A. and Erokhin, Yu.E., IIsolation of pigment–lipoprotein complexes from purple photosynthetic bacteria by preparative polyacrylamide gel electrophoresis, Mikrobiologiya, 1974, vol. 3, no. 3, pp. 654–658.Google Scholar
  12. 12.
    Ashikhmin, A., Makhneva, Z., and Moskalenko, A., The LH2 complexes are assembled in the cells of purple sulfur bacterium Ectothiorhodospira haloalkaliphila with inhibition of carotenoid biosynthesis, Photosynth. Res., 2014, vol. 119, pp. 291–303.CrossRefGoogle Scholar
  13. 13.
    Moskalenko, A.A., Kuznetsova, N.Yu., Erokhin, Yu.E., and Toropygina, O.A., Characteristics of organization and conformational transitions in the B800–850 complex from Chromatium minutissimum, Biokhimiya, 1996, vol. 61, no. 3, pp. 429–439.Google Scholar
  14. 14.
    Chi, S.C., Mothersole, D.J., Dilbeck, P., Niedzwiedzki, D.M., Zhang, H., Qian, P., Vasilev, C., Grayson, K.J., Jackson, P.J., Martin, E.C., Li, Y., Holten, D., and Hunter, C.N., Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway, Biochim. Biophys. Acta—Bioenergetics, 2015, vol. 1847, pp. 189–201.CrossRefGoogle Scholar
  15. 15.
    Cong, H., Niedzwiedzki, D.M., Gibson, G.N., LaFountain, A.M., Kelsh, R.M., Gardiner, A.T., Cogdell, R.J., and Frank, H.A., Ultrafast time resolved carotenoid-to-bacteriochlorophyll energy transfer in LH2 complexes from photosynthetic bacteria, J. Phys Chem. B, 2008, vol. 112, pp. 10689–10703.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. A. Ashikhmin
    • 1
    Email author
  • Z. K. Makhneva
    • 1
  • M. A. Bolshakov
    • 1
  • A. A. Moskalenko
    • 1
  1. 1.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations