Regular and Chaotic Dynamics

, Volume 23, Issue 7–8, pp 842–849 | Cite as

The Maslov Complex Germ and Semiclassical Spectral Series Corresponding to Singular Invariant Curves of Partially Integrable Hamiltonian Systems

  • Andrei I. ShafarevichEmail author


We study semiclassical eigenvalues of the Schroedinger operator, corresponding to singular invariant curve of the corresponding classical system. The latter system is assumed to be partially integrable. We describe geometric object corresponding to the eigenvalues (comlex vector bundle over a graph) and compute semiclassical eigenvalues in terms of the corresponding holonomy group.


semiclassical eigenvalues complex vector bundles holonomy group 

MSC2010 numbers

53C56 35P20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babich, V.M., Eigenfunctions Concentrated in a Neighborhood of a Closed Geodesic, Zap. Nauchn. Sem. LOMI, 1968, vol. 9, pp. 15–63 (Russian).MathSciNetzbMATHGoogle Scholar
  2. 2.
    Maslov, V.P., Operational Methods, Moscow: Mir, 1976.zbMATHGoogle Scholar
  3. 3.
    Maslov, V.P., The Complex WKB Method for Nonlinear Equations: 1. Linear Theory, Progr. Math. Phys., vol. 16, Basel: Birkhäuser, 1994.Google Scholar
  4. 4.
    Duistermaat, J. J. and Guillemin, V. W., The Spectrum of Positive Elliptic Operators and Periodic Bicharacteristics, Invent. Math., 1975, vol. 29, no. 1, pp. 39–79.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ralston, J.V., On the Construction of Quasimodes Associated with Stable Periodic Orbits, Comm. Math. Phys., 1976, vol. 51, no. 3, pp. 219–242.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Belov, V.V. and Dobrokhotov, S.Yu., SemiclassicalMaslov Asymptotics with Complex Phases: 1. General Approach, Theoret. and Math. Phys., 1992, vol. 92, no. 2, pp. 843–868; see also: Teoret. Mat. Fiz., 1992, vol. 92, no. 2, pp. 215–254.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dobrokhotov, S.Yu. and Shafarevich, A. I., Semiclassical Quantization of Invariant Isotropic Manifolds, in Topological Methods in the Theory of Hamiltonian Systems, A. V. Bolsinov, A.T. Fomenko, A. I. Shafarevich (Eds.), Moscow: Faktorial, 1998, pp. 41–114 (Russian).Google Scholar
  8. 8.
    Colin de Verdière, Y. and Parisse, B., Singular Bohr–Sommerfeld Rules, Comm. Math. Phys., 1999, vol. 205, no. 2, pp. 459–500.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bolsinov, A.V. and Fomenko, A. T., Integrable Hamiltonian Systems: Geometry, Topology, Classification, Boca Raton, Fla.: Chapman & Hall/CRC, 2004.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Faculty of Mechanics and MathematicsLomonosov Moscow State UniversityVorob’evy gory, MoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyMoscowRussia
  3. 3.Institute for Problems in MechanicsMoscowRussia
  4. 4.National Research Centre “Kurchatov Institute”MoscowRussia

Personalised recommendations