Advertisement

Regular and Chaotic Dynamics

, Volume 23, Issue 6, pp 797–802 | Cite as

Finding the Complement of the Invariant Manifolds Transverse to a Given Foliation for a 3D Flow

  • Robert S. MacKayEmail author
Article
  • 15 Downloads

Abstract

A method is presented to establish regions of phase space for 3D vector fields through which pass no co-oriented invariant 2D submanifolds transverse to a given oriented 1D foliation. Refinements are given for the cases of volume-preserving or Cartan–Arnol’d Hamiltonian flows and for boundaryless submanifolds.

Keywords

converse KAM theory conefields volume-preserving Hamiltonian 

MSC2010 numbers

37J30 70H07 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnol’d, V. I., On a Characteristic Class Entering into Conditions of Quantization, Funct. Anal. Appl., 1967, vol. 1, no. 1, pp. 1–13; see also: Funktsional. Anal. i Prilozhen., 1967, vol. 1, no. 1, pp. 1–14.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arnol’d, V. I., Mathematical Methods of Classical Mechanics, 2nd ed., Grad. Texts in Math., vol. 60, New York: Springer, 1989.CrossRefGoogle Scholar
  3. 3.
    Celletti, A. and MacKay, R., Regions of Nonexistence of Invariant Tori for Spin-Orbit Models, Chaos, 2007, vol. 17, no. 4, 043119, 12 pp.Google Scholar
  4. 4.
    Figueras, J.-Ll., Haro, A., and Luque, A., Rigorous Computer-Assisted Application of KAM Theory: A Modern Approach, Found. Comput. Math., 2017, vol. 17, no. 5, pp. 1123–1193.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Green, L.W., A Theorem of E.Hopf, Michigan Math. J., 1958, vol. 5, pp. 31–34.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hunt, T. J. and MacKay, R. S., Anosov Parameter Values for the Triple Linkage and a Physical System with a Uniformly Chaotic Attractor, Nonlinearity, 2003, vol. 16, no. 4, pp. 1499–1510.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Littlejohn, R.G., Variational Principles of Guiding Centre Motion, J. Plasma Phys., 1983, vol. 29, no. 1, pp. 111–125.CrossRefGoogle Scholar
  8. 8.
    MacKay, R. S., Transition to Chaos for Area-PreservingMaps, in Nonlinear Dynamics Aspects of Particle Accelerators (Santa Margherita di Pula, 1985), J. M. Jowett, M.Month, S.Turner (Eds.), Lecture Notes in Phys., vol. 247, Berlin: Springer, 1986, pp. 390–454.Google Scholar
  9. 9.
    MacKay, R. S., A Criterion for Non-Existence of Invariant Tori for Hamiltonian Systems, Phys. D, 1989, vol. 36, nos. 1–2, pp. 64–82.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    MacKay, R. S., Meiss, J. D., and Stark, J., Converse KAM Theory for Symplectic Twist Maps, Nonlinearity, 1989, vol. 2, no. 4, pp. 555–570.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    MacKay, R. S. and Percival, I.C., Converse KAM: Theory and Practice, Comm. Math. Phys., 1985, vol. 98, no. 4, pp. 469–512.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Mather, J.N., Non-Existence of Invariant Circles, Ergodic Theory Dynam. Systems, 1984, vol. 4, no. 2, pp. 301–309.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Moeckel, R., Generic Bifurcations of the Twist Coefficient, Ergodic Theory Dynam. Systems, 1990, vol. 10, no. 1, pp. 185–195.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Stark, J., An Exhaustive Criterion for the Non-Existence of Invariant Circles for Area-Preserving Twist Maps, Comm. Math. Phys., 1988, vol. 117, no. 2, pp. 177–89.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations