Advertisement

Regular and Chaotic Dynamics

, Volume 23, Issue 6, pp 785–796 | Cite as

On Discretization of the Euler Top

  • Andrey V. TsiganovEmail author
Article

Abstract

The application of intersection theory to construction of n-point finite-difference equations associated with classical integrable systems is discussed. As an example, we present a few new discretizations of motion of the Euler top sharing the integrals of motion with the continuous time system and the Poisson bracket up to the integer scaling factor.

Keywords

Euler top finite-difference equations arithmetic of divisors 

MSC2010 numbers

37J35 70H06 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abel, N.H., Mémoire sure une propriété générale d’une class très éntendue des fonctions transcendantes, in Oeuvres complétes: Vol. 1, Christiania: Grondahl, 1881, pp. 145–211.Google Scholar
  2. 2.
    Baker, H. F., Abelian Functions: Abel’s Theorem and the Allied Theory of Theta Functions, Cambridge: Cambridge Univ. Press, 1996.Google Scholar
  3. 3.
    Bobenko, A. I., Lorbeer, B., and Suris, Yu. B., Integrable Discretizations of the Euler Top, J. Math. Phys., 1998, vol. 39, no. 12, pp. 6668–6683.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Borisov, A.V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, Izhevsk: R&C Dynamics, Institute of Computer Science, 2005 (Russian).zbMATHGoogle Scholar
  5. 5.
    Eisenbud, D. and Harris, J., 3264 and All That: A Second Course in Algebraic Geometry, Cambridge: Cambridge Univ. Press, 2016.CrossRefzbMATHGoogle Scholar
  6. 6.
    Fedorov, Yu.N., Integrable Flows and Bäcklund Transformations on Extended Stiefel Varieties with Application to the Euler Top on the Lie Group SO(3), J. Nonlinear Math. Phys., 2005, vol. 12, suppl. 2, pp. 77–94.Google Scholar
  7. 7.
    Fedorov, Yu. and Basak, I., Separation of Variables and Explicit Theta-Function Solution of the Classical Steklov–Lyapunov Systems: A Geometric and Algebraic Geometric Background, Regul. Chaotic Dyn., 2011, vol. 16, nos. 3–4, pp. 374–395.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fulton, W., Intersection Theory, Ergeb. Math. Grenzgeb. (3), vol. 2, Berlin: Springer, 1984.CrossRefGoogle Scholar
  9. 9.
    Greenhill, A. G., The Applications of Elliptic Functions, New York: Dover, 1959.zbMATHGoogle Scholar
  10. 10.
    Griffiths, Ph., The Legacy of Abel in Algebraic Geometry, in The Legacy of Niels Henrik Abel: Papers from the Abel Bicentennial Conference (Oslo, June 3–8, 2002), O. A. Laudal, R.Piene (Eds.), Berlin: Springer, 2004, pp. 179–205.CrossRefGoogle Scholar
  11. 11.
    Hietarinta, J., Joshi, N., and Nijhoff, F.W., Discrete Systems and Integrability, Cambridge Texts Appl. Math., vol. 54, Cambridge: Cambridge Univ. Press, 2016.CrossRefzbMATHGoogle Scholar
  12. 12.
    Hirota, R. and Kimura, K., Discretization of the Euler Top, J. Phys. Soc. Japan, 2000, vol. 69, no. 3, pp. 627–630.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Jacobi, C.G. J., Sur la rotation d’un corps, in Gesammelte Werke: Vol. 2, Berlin: Reimer, 1882, pp. 289–352.Google Scholar
  14. 14.
    Kleiman, S. L., The Picard Scheme, in Fundamental Algebraic Geometry, Math. Surveys Monogr., vol. 123, Providence,R.I.: AMS, 2005, pp. 235–321.Google Scholar
  15. 15.
    Kötter, F., Die von Steklow und Liapunow entdeckten integralen Fälle der Bewegung eines Körpers in einer Flüussigkeit, Sitzungsber. König. Preuss. Akad. Wiss. Berlin, 1900, vol. 6, pp. 79–87.zbMATHGoogle Scholar
  16. 16.
    Kuznetsov, V. and Vanhaecke, P., Bäcklund Transformations for Finite-Dimensional Integrable Systems: A Geometric Approach, J. Geom. Phys., 2002, vol. 44, no. 1, pp. 1–40.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Moser, J. and Veselov, A. P., Discrete Versions of Some Classical Integrable Systems and Factorization of Matrix Polynomials, Comm. Math. Phys., 1991, vol. 139, no. 2, pp. 217–243.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Petrera, M. and Suris, Yu. B., On the Hamiltonian Structure of Hirota–Kimura Discretization of the Euler Top, Math. Nachr., 2010, vol. 283, no. 11, pp. 1654–1663.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Suris, Yu. B., The Problem of Integrable Discretization: Hamiltonian Approach, Progr. Math., vol. 219, Boston,Mass.: Birkhäuser, 2003.CrossRefzbMATHGoogle Scholar
  20. 20.
    Tsiganov, A.V., On the Steklov–Lyapunov Case of the Rigid Body Motion, Regul. Chaotic Dyn., 2004, vol. 9, no. 2, pp. 77–89.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Tsiganov, A.V., New Variables of Separation for the Steklov–Lyapunov System, SIGMA Symmetry Integrability Geom. Methods Appl., 2012, vol. 8, Paper 012, 14 pp.CrossRefzbMATHGoogle Scholar
  22. 22.
    Tsiganov, A.V., Simultaneous Separation for the Neumann and Chaplygin Systems, Regul. Chaotic Dyn., 2015, vol. 20, no. 1, pp. 74–93.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Tsiganov, A.V., On the Chaplygin System on the Sphere with Velocity Dependent Potential, J. Geom. Phys., 2015, vol. 92, pp. 94–99.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Tsiganov, A.V., On Auto and Hetero Bäcklund Transformations for the Hénon–Heiles Systems, Phys. Lett. A, 2015, vol. 379, nos. 45–46, pp. 2903–2907.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Tsiganov, A.V., Bäcklund Transformations for the Nonholonomic Veselova System, Regul. Chaotic Dyn., 2017, vol. 22, no. 2, pp. 163–179.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Tsiganov, A.V., Integrable Discretization and Deformation of the Nonholonomic Chaplygin Ball, Regul. Chaotic Dyn., 2017, vol. 22, no. 4, pp. 353–367.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Tsiganov, A.V., New Bi-Hamiltonian Systems on the Plane, J. Math. Phys., 2017, vol. 58, no. 6, 062901, 14 pp.Google Scholar
  28. 28.
    Tsiganov, A.V., Bäcklund Transformations and Divisor Doubling, J. Geom. Phys., 2018, vol. 126, pp. 148–158.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Veselov, A.P., Integrable Systems with Discrete Time, and Difference Operators, Func. Anal. Appl., 1988, vol. 22, no. 2, pp. 83–93; see also: Funktsional. Anal. i Prilozhen., 1988, vol. 22, no. 2, pp. 1–13.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Veselov, A.P., Integrable Maps, Russian Math. Surveys, 1991, vol. 46, no. 5, pp. 1–51; see also: Uspekhi Mat. Nauk, 1991, vol. 46, no. 5, pp. 3–45.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Udmurt State UniversityIzhevskRussia

Personalised recommendations