Advertisement

Regular and Chaotic Dynamics

, Volume 23, Issue 6, pp 751–766 | Cite as

Detection of Phase Space Structures of the Cat Map with Lagrangian Descriptors

  • Víctor J. García-GarridoEmail author
  • Francisco Balibrea-Iniesta
  • Stephen Wiggins
  • Ana M. Mancho
  • Carlos Lopesino
Article
  • 26 Downloads

Abstract

The goal of this paper is to apply Lagrangian Descriptors (LDs), a technique based on Dynamical Systems Theory (DST) to reveal the phase space structures present in the well-known Arnold’s cat map. This discrete dynamical system, which represents a classical example of an Anosov diffeomorphism that is strongly mixing, will provide us with a benchmark model to test the performance of LDs and their capability to detect fixed points, periodic orbits and their stable and unstable manifolds present in chaotic maps. In this work we show, both from a theoretical and a numerical perspective, how LDs reveal the invariant manifolds of the periodic orbits of the cat map. The application of this methodology in this setting clearly illustrates the chaotic behavior of the cat map and highlights some technical numerical difficulties that arise in the identification of its phase space structures.

Keywords

dynamical systems maps Lagrangian descriptors chaotic sets stable and unstable manifolds mixing 

MSC2010 numbers

37XX 37D10 37N10 37Mxx 70K43 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnol’d, V. I. and Avez, A., Ergodic Problems of Classical Mechanics, New York: Benjamin, 1968.zbMATHGoogle Scholar
  2. 2.
    Craven, G.T. and Hernandez, R., Lagrangian Descriptors of Thermalized Transition States on Time-Varying Energy Surfaces, Phys. Rev. Lett., 2015, vol. 115, no. 14, 148301, 5 pp.Google Scholar
  3. 3.
    Curbelo, J., García-Garrido, V. J., Mechoso, C.R., Mancho, A.M., Wiggins, S., and Niang, C., Insights into the Three-Dimensional Lagrangian Geometry of the Antarctic Polar Vortex, Nonlinear Proc. Geophys., 2017, vol. 24, no. 3, pp. 379–392.CrossRefGoogle Scholar
  4. 4.
    García-Garrido, V. J., Ramos, A., Mancho, A.M., Coca, J., and Wiggins, S., A Dynamical Systems Perspective for a Real-Time Response to a Marine Oil Spill, Mar. Pollut. Bull., 2016, vol. 112, nos. 1–2, pp. 201–210.CrossRefGoogle Scholar
  5. 5.
    Junginger, A. and Hernandez, R., Uncovering the Geometry of Barrierless Reactions Using Lagrangian Descriptors, J. Phys. Chem. B, 2016, vol. 120, no. 8, pp. 1720–1725.CrossRefGoogle Scholar
  6. 6.
    Lopesino, C., Balibrea-Iniesta, F., Wiggins, S., and Mancho, A.M., The Chaotic Saddle in the Lozi Map, Autonomous and Nonautonomous Versions, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2015, vol. 25, no. 13, 1550184, 18 pp.Google Scholar
  7. 7.
    Lopesino, C., Balibrea, F.,Wiggins, S., andMancho, A.M., LagrangianDescriptors for Two Dimensional, Area Preserving, Autonomous and Nonautonomous Maps, Commun. Nonlinear Sci. Numer. Simul., 2015, vol. 27, nos. 1–3, pp. 40–51.MathSciNetGoogle Scholar
  8. 8.
    Lopesino, C., Balibrea-Iniesta, F., García-Garrido, V. J., Wiggins, S., and Mancho, A.M., A Theoretical Framework for Lagrangian Descriptors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2017, vol. 27, no. 1, 1730001, 25 pp.Google Scholar
  9. 9.
    Jiménez Madrid, J.A. and Mancho, A.M., Distinguished Trajectories in Time Dependent Vector Fields, Chaos, 2009, vol. 19, no. 1, 013111, 18 pp.Google Scholar
  10. 10.
    Mancho, A.M., Wiggins, S., Curbelo, J., and Mendoza, C., Lagrangian Descriptors: A Method for Revealing Phase Space Structures of General Time Dependent Dynamical Systems, Commun. Nonlinear Sci. Numer. Simul., 2013, vol. 18, no. 12, pp. 3530–3557.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Mendoza, C. and Mancho, A.M., Hidden Geometry of Ocean Flows, Phys. Rev. Lett., 2010, vol. 105, no. 3, 038501, 4 pp.Google Scholar
  12. 12.
    Ramos, A.G., García-Garrido, V. J., Mancho, A.M., Wiggins, S., Coca, J., Glenn, S., Schofield, O., Kohut, J., Aragon, D., Kerfoot, J., Haskins, T., Miles, T., Haldeman, C., Strandskov, N., Allsup, B., Jones, C., and Shapiro, J., Lagrangian Coherent Structure Assisted Path Planning for Transoceanic Autonomous Underwater Vehicle Missions, Sci. Rep., 2018, vol. 8, 4575, 9 pp.Google Scholar
  13. 13.
    Chaos Detection and Predictability, Ch.H. Stokos, G. A. Gottwald, J.Laskar (Eds.), Lect. Notes Phys., vol. 915, Heidelberg: Springer, 2016.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Víctor J. García-Garrido
    • 1
    • 2
    Email author
  • Francisco Balibrea-Iniesta
    • 2
  • Stephen Wiggins
    • 3
  • Ana M. Mancho
    • 2
  • Carlos Lopesino
    • 2
  1. 1.Departamento de Física y MatemáticasUniversidad de AlcaláAlcalá de HenaresSpain
  2. 2.Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, C/Nicolás Cabrera 15Campus Cantoblanco UAM28049Spain
  3. 3.School of MathematicsUniversity of BristolBristolUK

Personalised recommendations