Regular and Chaotic Dynamics

, Volume 23, Issue 5, pp 583–594 | Cite as

A Lagrangian Analysis of Vortex Formation in the Wake behind a Transversely Oscillating Cylinder

  • Wenhao WangEmail author
  • Sergey V. Prants
  • Jiazhong Zhang
  • Le Wang


A vortex pair + single vortex (P+S) wake behind a transversely oscillating cylinder is investigated from the Lagrangian point of view. The Lagrangian coherent structures (LCSs) of the flow are computed to analyze formation of vortices in the wake. An asymmetric vortex street is obtained by using a dynamic mesh method. The corresponding vorticity field is found to agree well with real experiments. The LCSs are approximated by ridges of the finite-time Lyapunov exponents computed from transient velocity fields. The formation process is investigated using the vorticity field and the LCSs. It is found that details of the wake pattern are sensitive to initial oscillation conditions, and that the cylinder motion causes an early roll-up of boundary layers to form new vortex structures in the wake. Lagrangian description of the flow with the help of the LCSs provides further details about formation of vortices in the cylinder flow and helps to get a new insight into the flow structure in the wake region.


vortex street Lagrangian coherent structure vorticity 

MSC2010 numbers



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Williamson, C.H.K. and Govardhan, R., A Brief Review of Recent Results in Vortex-Induced Vibrations, J. Wind. Eng. Ind. Aerod., 2008, vol. 96, nos. 6–7, pp. 713–735.CrossRefGoogle Scholar
  2. 2.
    Williamson, C.H.K. and Roshko, A., Vortex Formation in the Wake of an Oscillating Cylinder, J.Fluid Struct., 1988, vol. 2, no. 4, pp. 355–381.CrossRefGoogle Scholar
  3. 3.
    Ponta, F. L. and Aref, H., Vortex Synchronization Regions in Shedding from an Oscillating Cylinder, Phys. Fluids, 2005, vol. 17, no. 1, 011703, 4 pp.CrossRefzbMATHGoogle Scholar
  4. 4.
    Ponta, F. L. and Aref, H., Numerical Experiments on Vortex Shedding from an Oscillating Cylinder, J. Fluid Struct., 2006, vol. 22, no. 3, pp. 327–344.CrossRefGoogle Scholar
  5. 5.
    Leontini, J. S., Thompson, M.C., and Hourigan, K., Three-Dimensional Transition in the Wake of a Transversely Oscillating Cylinder, J. Fluid Mech., 2007, vol. 577, pp. 79–104.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ongoren, A. and Rockwell, D., Flow Structure from an Oscillating Cylinder: Part 1. Mechanisms of Phase Shift and Recovery in the Near Wake, J. Fluid Mech., 1988, vol. 191, pp. 197–223.CrossRefGoogle Scholar
  7. 7.
    Jeon, D. and Gharib, M., On the Relationship between the Vortex Formation Process and Cylinder Wake Vortex Patterns, J. Fluid Mech., 2004, vol. 519, pp. 161–181.CrossRefzbMATHGoogle Scholar
  8. 8.
    Aref, H., On the Equilibrium and Stability of a Row of Point Vortices, J. Fluid Mech., 2006, vol. 290, pp. 167–181.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Aref, H. and Stremler, M.A., On the Motion of Three Point Vortices in a Periodic Strip, J. Fluid Mech., 2006, vol. 314, pp. 1–25.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Stremler, M. A., Salmanzadeh, A., Basu, S., and Williamson, Ch. H.K., A Mathematical Model of 2P and 2C Vortex Wakes, J. Fluid Struct., 2011, vol. 27, nos. 5–6, pp. 774–783.CrossRefGoogle Scholar
  11. 11.
    Aref, H., Brøns, M., and Stremler, M.A., Bifurcation and Instability Problems in VortexWakes, J. Phys. Conf. Ser., 2007, vol. 64, no. 1, 012015, 14 pp.CrossRefGoogle Scholar
  12. 12.
    Brøns, M., Jakobsen, B., Niss, K., Bisgaard, A.V., and Voigt, L. K., Streamline Topology in the Near Wake of a Circular Cylinder at Moderate Reynolds Numbers, J. Fluid Mech., 2007, vol. 584, pp. 23–43.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ponta, F. L. and Aref, H., Strouhal–Reynolds Number Relationship for Vortex Streets, Phys. Rev. Lett., 2004, vol. 93, no. 8, 084501, 4 pp.CrossRefGoogle Scholar
  14. 14.
    Ponta, F. L., Effect of Shear-Layer Thickness on the Strouhal–Reynolds Number Relationship for Bluff-Body Wakes, J. Fluid Struct., 2006, vol. 22, no. 8, pp. 1133–1138.CrossRefGoogle Scholar
  15. 15.
    Aref, H., Vortex Dynamics of Wakes, in IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence (Moscow, 25–30 August, 2006), A. V. Borisov, V. V. Kozlov, I. S. Mamaev, M.A. Sokolovskiy (Eds.), IUTAM Bookseries, vol. 6, Dordrecht: Springer, 2008, pp. 11–25.CrossRefGoogle Scholar
  16. 16.
    Pierrehumbert, R. T., Chaotic Mixing of Tracer and Vorticity by Modulated Travelling Rossby Waves, Geophys. Astrophys. Fluid Dyn., 1991, vol. 58, nos. 1–4, pp. 285–319.CrossRefGoogle Scholar
  17. 17.
    Haller, G. and Yuan, G., Lagrangian Coherent Structures and Mixing in Two-Dimensional Turbulence, Phys. D, 2000, vol. 147, nos. 3–4, pp. 352–370.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Haller, G., Lagrangian Coherent Structures, Annu. Rev. Fluid Mech., 2015, vol. 47, no. 1, pp. 137–162.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Samelson, R.M. and Wiggins, S., Lagrangian Transport in Geophysical Jets and Waves: The Dynamical Systems Approach, Interdiscip. Appl. Math., vol. 31, New York: Springer, 2006.Google Scholar
  20. 20.
    Budyansky, M.V., Uleysky, M.Yu., and Prants, S.V., Detecting Barriers to Cross-Jet Lagrangian Transport and Its Destruction in a Meandering Flow, Phys. Rev. E, 2009, vol. 79, no. 5, 056215, 11 pp.CrossRefGoogle Scholar
  21. 21.
    Prants, S.V., Budyansky, M.V., and Uleysky, M.Yu., Lagrangian Oceanography: Large-Scale Transport and Mixing in the Ocean, Berlin: Springer, 2017.CrossRefzbMATHGoogle Scholar
  22. 22.
    Kasten, J., Petz, Ch., Hotz, I., Hege, H.-Ch., Noack, B., and Tadmor, G., Lagrangian Feature Extraction of the Cylinder Wake, Phys. Fluids, 2010, vol. 22, no. 9, 091108, 1 pp.CrossRefGoogle Scholar
  23. 23.
    Rockwood, M.P., Taira, K., and Green, M.A., Detecting Vortex Formation and Shedding in Cylinder Wakes Using Lagrangian Coherent Structures, AIAA J., 2017, vol. 55, no. 1, pp. 15–23.CrossRefGoogle Scholar
  24. 24.
    Cagney, N. and Balabani, S., Lagrangian Structures and Mixing in the Wake of a Streamwise Oscillating Cylinder, Phys. Fluids, 2016, vol. 28, no. 4, 045107, 19 pp.CrossRefGoogle Scholar
  25. 25.
    Lei, P., Zhang, J., Li, K., and Wei, D., Study on the Transports in Transient Flow over Impulsively Started Circular Cylinder Using Lagrangian Coherent Structures, Commun. Nonlinear Sci., 2015, vol. 22, nos. 1–3, pp. 953–963.CrossRefGoogle Scholar
  26. 26.
    Prants, S.V., Budyansky, M.V., Ponomarev, V. I., and Uleysky, M.Yu., Lagrangian Study of Transport and Mixing in a Mesoscale Eddy Street, Ocean Model., 2011, vol. 38, nos. 1–2, pp. 114–125.CrossRefGoogle Scholar
  27. 27.
    Prants, S.V., Budyansky, M.V., and Uleysky, M.Yu., Identifying Lagrangian Fronts with Favourable Fishery Conditions, Deep Sea Res. Part 1 Oceanogr. Res. Pap., 2014, vol. 90, no. 1, pp. 27–35.CrossRefGoogle Scholar
  28. 28.
    Budyansky, M.V., Goryachev, V.A., Kaplunenko, D.D., Lobanov, V.B., Prants, S.V., Sergeev, A. F., Shlyk, N. V., and Uleysky, M.Yu., Role of Mesoscale Eddies in Transport of Fukushima-Derived Cesium Isotopes in the Ocean, Deep Sea Res. Part 1 Oceanogr. Res. Pap., 2015, vol. 96, pp. 15–27.CrossRefGoogle Scholar
  29. 29.
    Prants, S.V., Ponomarev, V. I., Budyansky, M.V., Uleysky, M.Yu., and Fayman, P.A., Lagrangian Analysis of Mixing and Transport of Water Masses in the Marine Bays, Izv. Atmos. Ocean. Phys., 2013, vol. 49, no. 1, pp. 82–96; see also: Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana, 2013, vol. 49, no. 1, pp. 91–106.CrossRefGoogle Scholar
  30. 30.
    Shadden, S. C., Lagrangian Coherent Structures, in Transport and Mixing in Laminar Flows: From Microfluidics to Oceanic Currents, R. Grigoriev (Ed.), Weinheim: Wiley, 2011, pp. 59–89.CrossRefGoogle Scholar
  31. 31.
    Onu, K., Huhn, F., and Haller, G., LCS Tool: A Computational Platform for Lagrangian Coherent Structures, J. Comput. Sci., 2015, vol. 7, pp. 26–36.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Wenhao Wang
    • 1
    Email author
  • Sergey V. Prants
    • 2
  • Jiazhong Zhang
    • 1
  • Le Wang
    • 1
  1. 1.School of Energy and Power EngineeringXi’an Jiaotong UniversityXi’anP.R. China
  2. 2.Pacific Oceanological Institute of the Russian Academy of SciencesVladivostokRussia

Personalised recommendations