Polymer Science, Series B

, Volume 61, Issue 5, pp 595–604 | Cite as

Preparation and Characterization of Waterborne Polyurethane Modified by 4-Maleimidophenol to Enhance the Mechanical and Thermal Properties

  • Yan-Na ZhaoEmail author
  • Lin Lei
  • Ding-Xi Ji
  • Yu-Hua Niu


A series of 4-maleimidophenol (4-HPM) modified waterborne polyurethane (MWPU) emulsions were successfully synthesized, using isophoronediisocyanate (IPDI), polycaprolactonediol (PCL, Mw = 1000), 1,4-butanediol (BDO), 2,2-dimethylolpropionic acid (DMPA), trimethylolpropane (TMP) and triethylamine (TEA) as raw material. The effects of 4-HPM content on the structure, morphology and physical properties of the MWPU were characterized by Fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscope, X-ray diffraction, thermogravimetric analysis, water absorption measurement, water contact angle measurement and tensile testing. The results revealed that with 4-HPM introduced into the WPUs backbones, the crystallinity, the hardness, tensile strength, water resistance and thermal stability of MWPU films were significantly augmented. Moreover, when the content of 4-HPM was 4.0 wt %, the tensile strength of the MWPU film was up to 46.4 MPa, improved about 134.19% (measurement error ±0.001) compared with WPU (19.8 MPa). When the content of 4-HPM was 6.0 wt %, the end decomposition temperature of the film was up to 489.6°C, improved 12.6% compared with WPU (434.8°C).



This work was supported by the research Project of Key Laboratory of Shaanxi Provincial Department of Education (17JS011), the Shaanxi Agricultural Science and Technology Innovation Project (NYKJ-2017-01); Shaanxi Provincial Science and Technology Project (2018ZDXM-NY-059).


  1. 1.
    Y. F. Du, P. W. Shi, Q. Y. Li, Y. C. Li, and C. F. Wu, Colloids Surf., A 454, 1 (2014).CrossRefGoogle Scholar
  2. 2.
    L. Liang, Z. Li, X. Lin, Y. Li, and Z. Xia, Chem. Eng. J. 253, 518 (2014).CrossRefGoogle Scholar
  3. 3.
    K. Li, Y. Shen, G. Fei, H. Wang, and J. Li, Prog. Org. Coat. 78, 146 (2015).CrossRefGoogle Scholar
  4. 4.
    Q. Luo, Y. Shen, P. Li, C. Wang, and Z. Zhao, J. Appl. Polym. Sci. 131, 8558 (2014).CrossRefGoogle Scholar
  5. 5.
    S. Zhang. Y. Li, L. Peng, Q. Li, S. Chen, and H. Ke, Composites, Part A 55, 94 (2013).CrossRefGoogle Scholar
  6. 6.
    Q. Tang, Q. Ai, J. He, X. Li, and R. Yang, High Perform. Polym. 25, 798 (2013).CrossRefGoogle Scholar
  7. 7.
    T. Tsutomu, S. Kyoko, and I. Kazuto, J. Polym. Sci., Part A: Polym. Chem. 40, 3497 (2002).CrossRefGoogle Scholar
  8. 8.
    X. Qin, X. Yang, X. Wang, and M. Wang, J. Polym. Sci., Part A: Polym. Chem. 43, 4469 (2005).CrossRefGoogle Scholar
  9. 9.
    Z. Min and T. Takeichi, Polymer 40, 5153 (1999).CrossRefGoogle Scholar
  10. 10.
    S. Mallakpour and F. Rafiemanzelat, High Perform. Polym. 37, 137 (2008).Google Scholar
  11. 11.
    S. Zhang, A. Yu, S. Liu, J. Zhao, J. Jiang, and X. Liu, Polym. Bull. 68, 1469 (2012).CrossRefGoogle Scholar
  12. 12.
    H. D. Hwang and H. J. Kim, J. Colloid Interface Sci. 362, 274 (2011).Google Scholar
  13. 13.
    T. Takeichi, Y. Guo, and T. Agag, J. Polym. Sci., Part A: Polym. Chem. 38, 4165 (2000).CrossRefGoogle Scholar
  14. 14.
    X. X. Guo, J. H. Fang, W. Tatsuya, T. Kazuhiro, K. Hidetoshi, and O. Kenichi, Macromolecules 35, 6707 (2002).CrossRefGoogle Scholar
  15. 15.
    N. D. Ghatge and J. Y. Jadhav, J. Polym. Sci.: Polym. Chem. Ed. 21, 3055 (1983).Google Scholar
  16. 16.
    W. A. Feld, B. Ramalingam, and F. W. Harris, J. Polym. Sci.: Polym. Chem. Ed. 21, 319 (1983).Google Scholar
  17. 17.
    D. C. Liao and K. H. Hsieh, J. Polym. Sci., Part A: Polym. Chem. 32, 1665 (1994).CrossRefGoogle Scholar
  18. 18.
    J. Liu, D. Ma, and Z. Li, Eur. Polym. J. 38, 661(2002).CrossRefGoogle Scholar
  19. 19.
    M. F. Lin, Y. C. Shu, W. C. Tsen, and F. S. Chuang, Polym. Int. 48, 433(1999).CrossRefGoogle Scholar
  20. 20.
    C. V. Avadhanl, P. P. Wadgaonkar, R. S. Khisti, V. G. Gunjikar, and S. P. Vernekar, Polym. Bull. 23, 163 (1990).CrossRefGoogle Scholar
  21. 21.
    H. S. Patel and H. S. Vyas, High Perform. Polym. 2, 251 (1990).CrossRefGoogle Scholar
  22. 22.
    H. S. Patel, V. J. Shah, H. S. Vyas, H. S. Patel, V. J. Shah, and H. S. Vyas, High Perform. Polym. 4, 247 (1992).CrossRefGoogle Scholar
  23. 23.
    Q. H. Tang, Q. S. Ai, R. J. Yang, and J. Y. He, Chem. Res. Chin. Univ. 35, 199 (2014).Google Scholar
  24. 24.
    H. J. Naghash and Z. Asgari, Prog. Org. Coat. 76, 318 (2013).CrossRefGoogle Scholar
  25. 25.
    G. Pitchaimari and C. T. Vijayakumar, J. Therm. Anal. Calorim. 114(3), 1351 (2013).CrossRefGoogle Scholar
  26. 26.
    L. Lei, Z. Xia, C. Ou, L. Zhang, and L. Zhong, Prog. Org. Coat. 88, 155 (2015).CrossRefGoogle Scholar
  27. 27.
    D. Y. Yang, C. P. Hu, and S. K. Ying, J. Polym. Sci., Part A: Polym. Chem. 43, 2606 (2005).CrossRefGoogle Scholar
  28. 28.
    L. Lei, Y. Zhang, C. Ou, Z. Xia, and L. Zhong, Prog. Org. Coat. 92, 85 (2015).CrossRefGoogle Scholar
  29. 29.
    Q. Li, L. Guo, T. Qiu, W. Xiao, D. Du, and X. Li, Appl. Surf. Sci. 377, 66 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.College of Chemistry and Chemical Engineering, Shaanxi University of Science and TechnologyXi’anChina

Personalised recommendations