Advertisement

Polymer Science, Series B

, Volume 61, Issue 5, pp 567–573 | Cite as

Hydrogenated Natural Rubber as an Alternative Replacement to Ethylene-Propylene-Diene-Monomer (EPDM) Rubber in Terms of Thermal-Oxidative Degradation Properties

  • Korn TaksapattanakulEmail author
  • Tulyapong Tulyapitak
  • Pranee Phinyocheep
  • Polphat Ruamcharoen
  • Jareerat Ruamcharoen
  • Philippe Daniel
MODIFICATION OF POLYMERS
  • 40 Downloads

Abstract

Hydrogenated natural rubber was prepared by the non-catalytic hydrogenation of natural rubber latex (NRL) with diimide generated from oxidation of hydrazine by hydrogen peroxide. The hydrogenated natural rubber (HNR) was characterized by Raman and FTIR spectroscopy. Raman and FTIR spectra showed that the chemical structure of hydrogenated natural rubber tends to be similar to ethylene-propylene-diene-monomer rubber. The thermogravimetric analysis revealed that the thermal-oxidative decomposition resistance of 65% HNR was close to those of EPDM and the thermal-oxidative decomposition behavior of 65% HNR was similar to EPDM. It is interesting that HNR can be a potential alternative to EPDM in terms of thermal-oxidative degradation properties.

REFERENCES

  1. 1.
    N. K. Singha, S. Bhattacharjee, and S. Sivaram, Rubber Chem. Technol. 70, 309 (1997).CrossRefGoogle Scholar
  2. 2.
    N. Hinchiranan, K. Charmondusit, P. Prasassarakich, and G. L. Rempel, J. Appl. Polym. Sci. 100, 4219 (2006).CrossRefGoogle Scholar
  3. 3.
    N. Hinchiranan, P. Prasassarakich, and G. L. Rempel, J. Appl. Polym. Sci. 100, 4499 (2006).CrossRefGoogle Scholar
  4. 4.
    N. Hinchiranan, W. Lertweerasirikun, W. Poonsawad, G. L. Rempel, and P. Prasassarakich, J. Appl. Polym. Sci. 113, 1566 (2009).CrossRefGoogle Scholar
  5. 5.
    A. Mahittikul, P. Prasassarakich, and G. L. Rempel, J. Appl. Polym. Sci. 100, 640 (2006).CrossRefGoogle Scholar
  6. 6.
    N. S. Can, N. Subramaniam, and R. Yahya, J. Appl. Polym. Sci. 59, 63 (1996).CrossRefGoogle Scholar
  7. 7.
    X. Lin, PhD Thesis (Waterloo University, Waterloo, 2005).Google Scholar
  8. 8.
    M. De Sarkar, P. P. De, and A. K. Bhowmick, Polymer 41, 907 (2000).CrossRefGoogle Scholar
  9. 9.
    W. Arayapranee and G. L. Rempel, J. Appl. Polym. Sci. 114, 4066 (2009).CrossRefGoogle Scholar
  10. 10.
    K. Simma, G. L. Rempel, and P. Prasassarakich, Polym. Degrad. Stab. 94, 1914 (2009).CrossRefGoogle Scholar
  11. 11.
    H. Q. Xie, X. D. Li, and J. S. Guo, J. Appl. Polym. Sci. 90, 1026 (2003).CrossRefGoogle Scholar
  12. 12.
    H. Bockhorn, A. Hornung, U. Hornung, and D. Schawaller, J. Anal. Appl. Pyrolysis. 48, 93 (1999).CrossRefGoogle Scholar
  13. 13.
    J. A. Blach, G. S. Watson, W. K. Busfield, and S. Myhra, Polym. Int. 51, 12 (2001).CrossRefGoogle Scholar
  14. 14.
    R. Gensler, C. J. G. Plummer, H. H. Kausch, E. Kra-mer, J. R. Pauquet, and H. Zweifel, Polym. Degrad. Stab. 67, 195 (2000).CrossRefGoogle Scholar
  15. 15.
    B. Singh and N. Sharma, Polym. Degrad. Stab. 93, 561 (2008).CrossRefGoogle Scholar
  16. 16.
    W. Wang and B. Qu, Polym. Degrad. Stab. 81, 531 (2003).CrossRefGoogle Scholar
  17. 17.
    G. Sott, Mechanisms of Polymer Degradation and Stabilization (Elsevier, England, 1927).Google Scholar
  18. 18.
    T. Kelen, Polymer Degradation (Van Nostrant Reinhold Company, New York, USA, 1983).Google Scholar
  19. 19.
    A. Mahittikul, P. Prasassarakich, and G. L. Rempel, J. Appl. Polym. Sci. 103, 2885 (2007).CrossRefGoogle Scholar
  20. 20.
    J. Samran, P. Phinyocheep, P. Daniel, and S. Kittipoom, J. Appl. Polym. Sci. 95, 16 (2004).CrossRefGoogle Scholar
  21. 21.
    A. Mahittikul, P. Prasassarakich, and G. L. Rempel, J. Appl. Polym. Sci. 105, 1188 (2007).CrossRefGoogle Scholar
  22. 22.
    J. Samran, P. Phinyocheep, P. Daniel, D. Derouet, and J. Y. Buzare’, J. Raman Spectrosc. 35, 1073 (2004).CrossRefGoogle Scholar
  23. 23.
    M. J. Starink, Thermochim. Acta 288, 97 (1996).CrossRefGoogle Scholar
  24. 24.
    K. Slopiecka, P. Bartocci, and F. Fantozzi, Appl. Energy 97, 491 (2012).CrossRefGoogle Scholar
  25. 25.
    M. J. Starink, Thermochim. Acta. 404, 163 (2003).CrossRefGoogle Scholar
  26. 26.
    Y. Tonbul and A. Saydut, Oil Shale 24, 547 (2007).Google Scholar
  27. 27.
    A. Aboulkas and K. El Harfi, Oil Shale 25, 426 (2008).CrossRefGoogle Scholar
  28. 28.
    I. Mohoriè, M. Krajnc, and U. Šebenik, Chem. Biochem. Eng. Q. 23, 493 (2009).Google Scholar
  29. 29.
    T. Hatakeyama and F. X. Quinn, Thermal Analysis Fundamentals and Applications to Polymer Science (Wiley, England, 1999).Google Scholar
  30. 30.
    Y. Cai, S. D. Li, C. P. Li, P. W. Li, C. Wang, M. Z. Lv, and K. Xu, J. Appl. Polym. Sci. 106, 743 (2007).CrossRefGoogle Scholar
  31. 31.
    S. D. Li, H. P. Yu, Z. Peng, C. S. Zhu, and P. S. Li, J. Appl. Polym. Sci. 75, 1339 (2000).CrossRefGoogle Scholar
  32. 32.
    Z. Peng, S. D. Li, M. F. Huang, K. Xu, C. Wang, P. W. Li, and X. G. Chen, J. Appl. Polym. Sci. 85, 2952 (2002).CrossRefGoogle Scholar
  33. 33.
    R. M. Silverstein, G. C. Bassler, and T. C. Morrill, Spectrometer Identification of Organic Compounds (Wiley, New York, 1991).Google Scholar
  34. 34.
    B. D. Mistry, A Handbook of Spectroscopic Data Chemistry. UV, IR, PMR, 13 CNMR and Mass Spectroscopy (Oxford Book Company, India, 2009).Google Scholar
  35. 35.
    P. J. Hendra and K. D. O. Jackson, Spectrochim. Acta 50, 1987 (1994).CrossRefGoogle Scholar
  36. 36.
    A. M. Healey, P. J. Hendra, and Y. D. West, J. Polym. 30, 4009 (1996).CrossRefGoogle Scholar
  37. 37.
    K. D. O. Jackson, M. J. R. Loadman, C. H. Jones, and G. Ellis, Spectrochim. Acta 64, 217 (1990).CrossRefGoogle Scholar
  38. 38.
    S. J. Bunce, H. G. M. Edwards, A. F. Johnson, I. R. Lewis, and P. H. Turner, Spectrochim. Acta 49, 775 (1993).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Korn Taksapattanakul
    • 1
    Email author
  • Tulyapong Tulyapitak
    • 2
  • Pranee Phinyocheep
    • 3
  • Polphat Ruamcharoen
    • 4
  • Jareerat Ruamcharoen
    • 5
  • Philippe Daniel
    • 6
  1. 1.Faculty of Science and Technology, Princess of Naradhiwas UniversityNarathiwatThailand
  2. 2.Department of Rubber Technology and Polymer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani CampusPattaniThailand
  3. 3.Department of Chemistry, Faculty of Science, Mahidol UniversityBangkokThailand
  4. 4.Rubber and Polymer Technology Program, Faculty of Science and Technology, Songkhla Rajabhat UniversitySongkhlaThailand
  5. 5.Division of Chemistry, Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani campusPattaniThailand
  6. 6.Institut des Molécules et Matériaux du Mans, IMMM-UMR-CNRS 6283, Université du MaineLe MansFrance

Personalised recommendations