Advertisement

Polymer Science, Series B

, Volume 61, Issue 5, pp 613–621 | Cite as

Synthesis and Properties of Poly(1-trimethylsilyl-1-propyne) Containing Quaternary Ammonium Salts with Methyl and Ethyl Substituents

  • V. G. PolevayaEmail author
  • V. Yu. Geiger
  • S. M. Matson
  • G. A. Shandryuk
  • S. M. Shishatskii
  • V. S. Khotimskii
FUNCTIONAL POLYMERS
  • 1 Downloads

Abstract

Poly(1-trimethylsilyl-1-propyne) modified with quaternary ammonium salts is synthesized. The introduction of salts into the polymer structure is carried out using a two-step method consisting in the bromination of the starting polymer followed by the addition of tertiary alkylamines—trimethylamine and triethylamine. The presence of ammonium salts is confirmed by the data of organometallic analysis and IR spectroscopy. X-ray diffraction analysis is used to study the supramolecular structure of the materials obtained. The TGA data indicate their high thermal and thermo-oxidative stability. The permeability, solubility, and diffusion coefficients of the poly(1-trimethylsilyl-1-propyne) samples containing trimethylamine and triethylamine salts for individual CO2, N2, and CH4 gases are determined. An increased ideal selectivity for the separation of gas pairs CO2/N2 and CO2/CH4 in modified poly(1-trimethylsilyl-1-propyne) is achieved owing to the increased selectivity of the dissolution of CO2 in quaternary ammonium salts.

Notes

ACKNOWLEDGMENTS

We are grateful to I.S. Levin for the XRD studies of polymers and G.N. Bondarenko for IR measurements.

FUNDING

The work was performed within the framework of the State Task for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences. The experimental work on the determination of the diffusion coefficients and permeability of the samples was carried out within the framework of the Cooperation Agreement the Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research (Germany) and the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences. In accordance with the Agreement, each of the parties to the Agreement does the financing of cooperation from its own resources.

REFERENCES

  1. 1.
    T. C. Merkel, H. Lin, X. Wei, and R. Baker, J. Membr. Sci. 359, 126 (2010).CrossRefGoogle Scholar
  2. 2.
    J. G. J. Olivier, G. Janssens-Maenhout, and J. A. H. W. Peters, Trends in Global CO 2 Emission. Report (PBL Netherlands Environmental Assessment Agency, the Hague; Bilthoven, 2012).Google Scholar
  3. 3.
    T. Nguyen, M. Hilliard, and G. Rochelle, Int. J. Greenhouse Gas Control 4, 707 (2010).CrossRefGoogle Scholar
  4. 4.
    M. Wang, A. Lawal, P. Stephenson, J. Sidders, and C. Ramshaw, Chem. Eng. Res. Des. 89, 1609 (2011).CrossRefGoogle Scholar
  5. 5.
    E. Ünveren, B. Monkul, S. Sarıoglan, N. Karademir, and E. Alper, Petroleum 3, 37 (2017).CrossRefGoogle Scholar
  6. 6.
    H. Bamdad, K. Hawboldt, and S. MacQuarrie, Renewable Sustainable Energy Rev. 81, 1705 (2018).CrossRefGoogle Scholar
  7. 7.
    R. Ben-Mansour, M. A. Habib, O. E. Bamidele, M. Basha, N. N. A. Qasem, A. Peedikakkal, T. Laoui, and M. Ali, Appl. Energy 161, 225 (2016).CrossRefGoogle Scholar
  8. 8.
    A. Hart and N. Gnanendran, Energy Procedia 1, 697 (2009).CrossRefGoogle Scholar
  9. 9.
    A. Brunetti, F. Scura, G. Barbieri, and E. Drioli, J. Membr. Sci. 359, 115 (2010).CrossRefGoogle Scholar
  10. 10.
    D. Aaron and C. Tsouris, Sep. Sci. Technol. 40, 321 (2005).CrossRefGoogle Scholar
  11. 11.
    R. Srinivasan, S. R. Auvil, and P. M. Burban, J. Membr. Sci. 86, 67 (1994).CrossRefGoogle Scholar
  12. 12.
    D. Hoffmann, M. Heuchel, Yu. Yampolskii, V. Khotimskii, and V. Shantarovich, Macromolecules 35, 2129 (2002).CrossRefGoogle Scholar
  13. 13.
    D. S. Pope, W. J. Koros, and H. B. Hopfenberg, Macromolecules 27, 5839 (1994).CrossRefGoogle Scholar
  14. 14.
    A. Morisato, H. C. Shen, S. S. Sankar, B. D. Freeman, I. Pinnau, and C. G. Casillas, J. Polym. Sci., Part B: Polym. Phys. 34, 2209 (1996).CrossRefGoogle Scholar
  15. 15.
    Y. B. Xiong, H. Wang, Y. J. Wang, and R. M. Wang, Polym. Adv. Technol. 23, 835 (2012).CrossRefGoogle Scholar
  16. 16.
    S. Bazhenov, A. Malakhov, D. Bakhtin, V. Khotimskiy, G. Bondarenko, V. Volkov, M. Ramdin, T. H. G. Vlugt, and A. Volkov, Int. J. Greenhouse Gas Control 71, 293 (2018).CrossRefGoogle Scholar
  17. 17.
    F. L. Bernard, F. Dalla Vecchia, M. F. Rojas, R. Ligabue, M. O. Vieira, E. M. Costa, V. V. Chaban, and S. Einloft, J. Chem. Eng. 61, 1803 (2016).Google Scholar
  18. 18.
    X. Zhou, J. Weber, and J. Yuan, Curr. Opin. Green Sustainable Chem. 16, 39 (2019).CrossRefGoogle Scholar
  19. 19.
    J. Yuan, D. Mecerreyes, and M. Antonietti, Prog. Polym. Sci. 38, 1009 (2013).CrossRefGoogle Scholar
  20. 20.
    M. S. R. Shahrom, C. D. Wilfred, and A. K. Z. Taha, J. Mol. Liq. 219, 306 (2016).CrossRefGoogle Scholar
  21. 21.
    J. E. Bara, T. K. Carlisle, C. J. Gabriel, D. Camper, A. Finotello, D. L. Gin, and R. D. Noble, Ind. Eng. Chem. Res. 48, 2739 (2009).CrossRefGoogle Scholar
  22. 22.
    J. Wang, J. Luo, S. Feng, H. Li, Y. Wan, and X. Zhang, Green Energy Environ. 1, 43 (2016).Google Scholar
  23. 23.
    L. M. Robeson, J. Membr. Sci. 320, 390 (2008).CrossRefGoogle Scholar
  24. 24.
    J. G. Wijmans and R. W. Baker, J. Membr. Sci. 107, 1 (1995).CrossRefGoogle Scholar
  25. 25.
    T. Sakaguchi, H. Ito, T. Masuda, and T. Hashimoto, Polymer 54, 6709 (2013).CrossRefGoogle Scholar
  26. 26.
    E. Marwanta, T. Namikoshi, M. Teraguchi, T. Kaneko, and T. Aoki, Polym. Prepr. 58, 100 (2009).Google Scholar
  27. 27.
    V. G. Polevaya, A. M. Vorobei, O. I. Pokrovskiy, G. A. Shandryuk, O. O. Parenago, V. V. Lunin, and V. S. Khotimskiy, J. Phys. Chem. B 11, 1276 (2017).Google Scholar
  28. 28.
    V. Khotimsky, M. Tchirkova, E. Litvinova, A. Rebrov, G. Bondarenko, J. Polym. Sci., Part A: Polym. Chem. 41, 2133 (2003).CrossRefGoogle Scholar
  29. 29.
    V. G. Polevaya, G. N. Bondarenko, G. A. Shandryuk, V. D. Dolzhikova, V. S. Khotimskiy, Russ. Chem. Bull. 65, 1067 (2016).CrossRefGoogle Scholar
  30. 30.
    M. Wojdyr, J. Appl. Crystallogr. 43, 1126 (2010).CrossRefGoogle Scholar
  31. 31.
    M. M. Rahman, V. Filiz, S. Shishatskiy, C. Abetz, P. Georgopanos, M. M. Khan, S. Neumann, and V. Abetz, Appl. Mater. Interfaces 23, 12289 (2015).CrossRefGoogle Scholar
  32. 32.
    A. M. Shishatskii, Yu. P. Yampol’skii, and K.-V. Peinemann, J. Membr. Sci. 112, 275 (1996).CrossRefGoogle Scholar
  33. 33.
    Y. Duan, P. Sun, S. Zhang, Z. Yao, X. Luo, and L. J. Ye, Fuel Chem. Technol. 43, 1113 (2015).CrossRefGoogle Scholar
  34. 34.
    N. A. Plate, E. M. Antipov, V. V. Teplyakov, V. S. Khotimskii, and Yu. P. Yampol’skii, Vysokomol. Soedin., Ser. A 32, 1123 (1990).Google Scholar
  35. 35.
    Yu. K. Ovchinnikov, E. M. Antipov, G. S. Markova, and N. F. Bakeev, Macromol. Chem. 177, 1567 (1976).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. G. Polevaya
    • 1
    Email author
  • V. Yu. Geiger
    • 1
  • S. M. Matson
    • 1
  • G. A. Shandryuk
    • 1
  • S. M. Shishatskii
    • 2
  • V. S. Khotimskii
    • 1
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Polymer Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal ResearchGeesthachtGermany

Personalised recommendations