Advertisement

Polymer Science, Series B

, Volume 61, Issue 5, pp 519–529 | Cite as

Oxidative Polymerization of 3,6-Phenylenediamino-2,5-dichlorobenzoquinone

  • A. V. Orlov
  • S. G. KiselevaEmail author
  • G. N. Bondarenko
  • G. P. Karpacheva
POLYMERIZATION
  • 1 Downloads

Abstract

The oxidative polymerization of 3,6-phenylenediamino-2,5-dichlorobenzoquinone is studied for the first time, and the monomer is shown to exhibit a high reactivity in this process. The rate of its polymerization is much higher than that of aniline and 3,6-dianiline-2,5-dichlorobenzoquinone, and the induction period of oxidation is absent. The kinetic features of the oxidative polymerization of 3,6-phenylenediamino-2,5-dichlorobenzoquinone are investigated by measuring variation in the redox potential of the reaction mixture in the course of time. It is found that the kinetic curves of 3,6-phenylenediamino-2,5-dichlorobenzoquinone polymerization do not follow the S-shaped pattern typical of aniline polymerization. The mechanism of polymerization proceeding through a number of successive tautomeric rearrangements is advanced. The structure of the polymers is studied by FTIR and X-ray photoelectron spectroscopy. During the reaction of oxidative polymerization, cyclization processes occur to form phenazine and phenoxazine rings which give rise to a ladder polyconjugated polymer. The effect of reaction conditions, such as the concentration of reagents, their ratio, and the pH of the reaction medium, on the process is investigated.

Notes

FUNDING

This work was performed within the framework of the State Task for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

REFERENCES

  1. 1.
    Y. Cao, A. Andretta, A. J. Heeger, and P. Smith, Polymer 30, 2305 (1989).CrossRefGoogle Scholar
  2. 2.
    H. Okamoto, M. Okamoto, and T. Kotaka, Polymer 39, 4359 (1998).CrossRefGoogle Scholar
  3. 3.
    A. P. Monkman, P. N. Adams, P. J. Laughin, and E. R. Holland, Synth. Met. 69, 183 (1995).CrossRefGoogle Scholar
  4. 4.
    G. Ciric-Marjanovic, Synth. Met. 177, 1 (2013).CrossRefGoogle Scholar
  5. 5.
    A. Eftekhari, L. Li, and Y. Yang, J. Power Sources 347, 86 (2017).CrossRefGoogle Scholar
  6. 6.
    P. Zarrintaj, Z. Ahmadi, H. Vahabi, F. Ducos, M. R. Saeb, and M. Mozafari, Mater. Today: Proc. 5, 15852 (2018).Google Scholar
  7. 7.
    A. V. Orlov, S. G. Kiseleva, G. P. Karpacheva, V. V. Teplyakov, D. A. Syrtsova, L. E. Starannikova, and T. L. Lebedeva, J. Appl. Polym. Sci. 89, 1379 (2003).CrossRefGoogle Scholar
  8. 8.
    J. Stejskal, I. Sapurina, M. Trchova, and E. N. Konyu-shenko, Macromolecules 41, 3530 (2008).CrossRefGoogle Scholar
  9. 9.
    S. Mu, C. Chen, and H. Xue, J. Electroanal. Chem. 724, 71 (2014).CrossRefGoogle Scholar
  10. 10.
    Ya. O. Mezhuev, Yu. V. Korshak, and M. I. Shtilman, Russ. Chem. Rev. 86, 1271 (2017).CrossRefGoogle Scholar
  11. 11.
    I. S. Strakhov, Ya. O. Mezhuev, Yu. V. Korshak, and M. I. Shtil’man, Russ. J. Gen. Chem. 86, 2682 (2016).CrossRefGoogle Scholar
  12. 12.
    K. S. Alva, J. Kumar, K. A. Marx, and S. K. Tripathi, Macromolecules 30, 4024 (1997).CrossRefGoogle Scholar
  13. 13.
    P. Soledad, E. M. Andrade, and F. V. Molina, React. Funct. Polym. 69, 197 (2009).CrossRefGoogle Scholar
  14. 14.
    Y. Oztekina, M. Toka, H. Nalvuranc, S. Kiyaka, T. Govera, Z. Yazicigil, A. Ramanaviciene, and A. Ramanavicius, Electrochim. Acta 56, 387 (2010).CrossRefGoogle Scholar
  15. 15.
    M. Mateos, R. M. Prest, J. M. Suisse, and M. Bouvet, Mater. Today: Proc. 6, 328 (2019).Google Scholar
  16. 16.
    A. Falcou, A. Longeau, D. Marsacq, P. Hourquebie, and A. Duchne, Synth. Met. 101, 647 (1999).CrossRefGoogle Scholar
  17. 17.
    W. A. Gazotti, Jr. and M.-A. De Paoli, Synth. Met. 80, 263 (1996).CrossRefGoogle Scholar
  18. 18.
    Ya. O. Mezhuev, Yu. V. Korshak, M. I. Shtil’man, A. A. Koledenkov, M. S. Ustinova, and I. N. Semenova, Plast. Massy, No. 2, 22 (2011).Google Scholar
  19. 19.
    R.-H. Lee, H.-H. Lai, J.-J. Wang, R.-J. Jeng, and J.‑J. Lin, Thin Solid Films 517, 500 (2008).CrossRefGoogle Scholar
  20. 20.
    Y. Xu, L. Dai, J. Chen, J.-Y. Gal, and H. Wu, Eur. Polym. J. 43, 2072 (2007).CrossRefGoogle Scholar
  21. 21.
    S. Z. Ozkan, G. P. Karpacheva, and I. S. Eremeev, Adv. Nanotechnol. 13, 161 (2015).Google Scholar
  22. 22.
    A. V. Orlov, S. Zh. Ozkan, G. N. Bondarenko, and G. P. Karpacheva, Polym. Sci., Ser. B 48, 5 (2006).CrossRefGoogle Scholar
  23. 23.
    S. Zh. Ozkan, G. N. Bondarenko, A. V. Orlov, and G. P. Karpacheva, Polym. Sci., Ser. B 51, 149 (2009).CrossRefGoogle Scholar
  24. 24.
    S. Zh. Ozkan, G. P. Karpacheva, and G. N. Bondarenko, Russ. Chem. Bull., Int. Ed. 60, 1651 (2011).Google Scholar
  25. 25.
    S. Zh. Ozkan, G. P. Karpacheva, A. V. Orlov, and M. A. Dzyubina, Polym. Sci., Ser. B 49, 36 (2007).CrossRefGoogle Scholar
  26. 26.
    S. Z. Ozkan, G. P. Karpacheva, G. N. Bondarenko, and Y. G. Kolyagin, Polym. Sci., Ser. B 57, 106 (2015).CrossRefGoogle Scholar
  27. 27.
    S. G. Kiseleva, A. V. Orlov, G. N. Bondarenko, and G. P. Karpacheva, Polym. Sci., Ser. B 60, 717 (2018).CrossRefGoogle Scholar
  28. 28.
    V. V. Abalyaeva, L. I. Tkachenko, G. V. Nikolaeva, A. V. Orlov, S. G. Kiseleva, O. N. Efimov, and G. P. Karpacheva, Polym. Sci., Ser. B 59, 459 (2017).CrossRefGoogle Scholar
  29. 29.
    A. V. Orlov, S. G. Kiseleva, G. P. Karpacheva, G. V. Nikolaeva, L. I. Tkachenko, O. N. Efimov, and V. V. Abalyaeva, RF Patent No. 2016118436 (2017).Google Scholar
  30. 30.
    V. V. Abalyaeva, G. V. Nikolaeva, E. N. Kabachkov, S. G. Kiseleva, A. V. Orlov, O. N. Efimov, and G. P. Karpacheva, Polym. Sci., Ser. B 60, 511 (2018).CrossRefGoogle Scholar
  31. 31.
    L. I. Tkachenko, G. V. Nikolaeva, A. V. Orlov, S. G. Kiseleva, O. N. Efimov, and G. P. Karpacheva, Russ. J. Appl. Chem. 92, (2019). (in press).Google Scholar
  32. 32.
    T. Akutagawa and T. Nakamura, Cryst. Growth Des. 6, 70 (2006).CrossRefGoogle Scholar
  33. 33.
    S. P. Surwade, V. Dua, N. Manohar, S. K. Manohar, E. Beck, and J. P. Ferraris, Synth. Met. 159, 445 (2009).CrossRefGoogle Scholar
  34. 34.
    J. Stejskal, P. Bober, M. Trchová, Ji. Horský, J. Pilař, and Z. Walterová, Synth. Met. 192, 66 (2014).CrossRefGoogle Scholar
  35. 35.
    N. Gospodinova and L. Terlemezyan, Prog. Polym. Sci. 23, 1443 (1998).CrossRefGoogle Scholar
  36. 36.
    J. Wang and S. Wang, Chem. Eng. J. 334, 1502 (2018).CrossRefGoogle Scholar
  37. 37.
    H. S. Bazzi, A. Mostafa, S. Y. AlQaradawi, and El‑M. Nour, J. Mol. Struct. 842, 1 (2007).CrossRefGoogle Scholar
  38. 38.
    R. L. Prasad, A. Kushwaha, S. M. Kumar, and R. A. Yadav, Spectrochim. Acta, Part A 69, 304 (2008).CrossRefGoogle Scholar
  39. 39.
    M. S. Refat, L. El-Zayat, and O. Z. Yesilel, Polyhedron 27, 475 (2008).CrossRefGoogle Scholar
  40. 40.
    A. Benyoucef, F. Huerta, J. L. Vázquez, and E. Morallon, Eur. Polym. J. 41, 843 (2005).CrossRefGoogle Scholar
  41. 41.
    N. V. Bhat, D. T. Seshadri, and S. R. Phadke, Synth. Met. 130, 185 (2002).CrossRefGoogle Scholar
  42. 42.
    G.-W. Hwang, K.-Y. Wu, H.-T. Hua, and S.-A. Chen, Synth. Met. 92, 39 (1998).CrossRefGoogle Scholar
  43. 43.
    R. Sivakumar and R. Saraswathi, Synth. Met. 138, 381 (2003).CrossRefGoogle Scholar
  44. 44.
    D. Ichinohe, T. Muranaka, T. Sasaki, T. Kobayashi, and H. Kise, J. Polym. Sci., Part A: Polym. Chem. 36, 2593 (1998).CrossRefGoogle Scholar
  45. 45.
    Sh. Ren, X. Yang, X. Zhao, Y. Zhang, and W. Huang, J. Appl. Polym. Sci. 133, 43368 (2016). Google Scholar
  46. 46.
    J. C. Fatuch, M. A. Soto-Oviedo, C. O. Avellaneda, M. F. Franco, W. Romao, M.-A. De Paoli, and A. F. Nogueira, Synth. Met. 159, 2348 (2009).CrossRefGoogle Scholar
  47. 47.
    R. Tucceri, P. M. Arnal, and A. N. Scian, J. Spectrosc. 2013, article ID 951604 (2013).CrossRefGoogle Scholar
  48. 48.
    B. Marjanović , I. Yuranić, G. Ćirić-Marjanović, I. Paš ti, and M. Trchova, React. Funct. Polym. 71, 704 (2011).CrossRefGoogle Scholar
  49. 49.
    N. Resada, Ju. Park, and K. Ryu, Korean J. Chem. Eng. 33, 3011 (2010).CrossRefGoogle Scholar
  50. 50.
    L. Zhang, L. Chai, H. Wang, and Z. Yang, Mater. Lett. 64, 1193 (2010).CrossRefGoogle Scholar
  51. 51.
    M. Blaha, M. Trchova, Z. Moravkova, P. Humpolicek, and J. Stejskal, Mater. Chem. Phys. 205, 423 (2018).CrossRefGoogle Scholar
  52. 52.
    E. T. Kang, K. G. Neoh, T. C. Tan, S. H. Khor, and K. L. Tan, Macromolecules 23, 2918 (1990).CrossRefGoogle Scholar
  53. 53.
    M. E. Carbone, R. Ciriello, S. Granafai, A. Guerriari, and A. M. Salvi, Electrochim. Acta 144, 174 (2014).CrossRefGoogle Scholar
  54. 54.
    L. Al-Mashat, K. Shin, K. Kalantar-Zadeh, J. D. Plessis, H. R. W. Kojima, R. B. Kaner, D. Li, X. Gou, S. J. Ippolito, and W. W. Wodarski, J. Phys. Chem. C 114, 16168 (2010).CrossRefGoogle Scholar
  55. 55.
    E. T. Kang, K. G. Neoh, and K. L. Tan, Prog. Polym. Sci. 23, 277 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. V. Orlov
    • 1
  • S. G. Kiseleva
    • 1
    Email author
  • G. N. Bondarenko
    • 1
  • G. P. Karpacheva
    • 1
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia

Personalised recommendations