Polymer Science, Series B

, Volume 61, Issue 5, pp 540–549 | Cite as

Green Chemistry of Polyurethanes: Synthesis, Functional Composition, and Reactivity of Cyclocarbonate-Containing Sunflower Oil Triglycerides—Renewable Raw Materials for New Urethanes

  • M. A. LevinaEmail author
  • D. G. Miloslavskii
  • M. V. Zabalov
  • M. L. Pridatchenko
  • A. V. Gorshkov
  • V. T. Shashkova
  • V. L. Krasheninnikov
  • R. P. Tiger


Epoxy- and cyclocarbonate-containing oligomers are synthesized by oxidizing sunflower oil and subsequent catalytic carbonization via reaction with carbon dioxide. Using mass spectrometry, it is shown that oligomers, which are triglycerides of epoxy- and cyclocarbonate-containing carboxylic acid derivatives, are characterized by a wide distribution over composition, reflecting the entire set of components contained in natural raw materials. It is found that oligomers derived from sunflower oil contain 16 types of triglycerides in various combinations in contrast to 25 types of triglycerides contained in soybean oil-based oligomers. At the same time, the reactivity of both oligomers as the main representatives of renewable plant materials for new urethanes, which is evaluated by studying the n-butylaminolysis model reaction, is approximately the same.



The work was performed within the framework of the state task (Theme V 45.5, 0082-2014-0015, no. AAAA-A17-117032750201-9) and was supported by the Russian Foundation for Basic Research (project 17-03-00146).


  1. 1.
    A. Cornille, R. Auvergne, O. Figovsky, B. Boutevin, and S. Caillol, Eur. Polym. J. 87, 535 (2017).CrossRefGoogle Scholar
  2. 2.
    G. Rokicki, P. G. Parzuchowski, and M. Mazurek, Polym. Adv. Technol. 26, 707 (2015).CrossRefGoogle Scholar
  3. 3.
    L. Maisonneuve, O. Lamarzelle, E. Rix, E. Grau, and H. Cramail, Chem. Rev. 115, 12407 (2015).CrossRefGoogle Scholar
  4. 4.
    H. Blattmann, M. Fleischer, M. Bahr, and R. Mulhaupt, Macromol. Rapid Commun. 35, 1238 (2014).CrossRefGoogle Scholar
  5. 5.
    O. Figovsky, L. Shapovalov, A. Leykin, R. Birukova, and R. Potashnikova, PU Mag. 10, 1 (2013).Google Scholar
  6. 6.
    B. Nohra, L. Candy, J.-F. Blanco, C. Guerin, Y. Raoul, and Z. Moolaungui, Macromolecules 46, 3771 (2013).CrossRefGoogle Scholar
  7. 7.
    O. Figovsky, L. Shapovalov, A. Leykin, R. Birukova, and R. Potashnikova, Int. Lett. Chem., Phys. Astron. 3, 52 (2013).Google Scholar
  8. 8.
    J. Guan, Y. Song, Y. Lin, X. Yin, M. Zuo, Y. Zhao, X. Tao, and Q. Zheng, Ind. Eng. Chem. Res. 50, 6517 (2011).CrossRefGoogle Scholar
  9. 9.
    R. P. Tiger, Polym. Sci., Ser. B 46, 142 (2004).Google Scholar
  10. 10.
    T. F. Garrison and M. R. Kessler, in Bio-Based Plant Oil Polymers and Composites, Ed. by S. A. Madbouly, C. Zhang, and M. R. Kessler (Elsevier, Amsterdam, 2016), p. 37.Google Scholar
  11. 11.
    M. Bahr and R. Mulhaupt, Green Chem. 14, 483 (2012).CrossRefGoogle Scholar
  12. 12.
    I. Javni, D. P. Hong, and Z. S. Petrovic, J. Appl. Polym. Sci. 128, 566 (2013).CrossRefGoogle Scholar
  13. 13.
    D. Miloslavsky, E. Gotlib, O. Figovsky, and D. Pashin, Int. Lett. Chem., Phys. Astron. 8, 20 (2014).Google Scholar
  14. 14.
    F. Gunstone, The Chemistry of Oils and Fats: Sources, Composition, Properties and Uses (Blackwell Publ. Ltd., Oxford, 2004).Google Scholar
  15. 15.
    N. Korak, Vegatable Oil-based Polymers: Properties. Processing and Applications (Woodhead Publ. Ltd., Philadelphia, 2012).CrossRefGoogle Scholar
  16. 16.
    M. A. Levina, D. G. Miloslavskii, M. L. Pridatchenko, A. V. Gorshkov, V. T. Shashkova, E. M. Gotlib, and R. P. Tiger, Polym. Sci., Ser. B 57, 584 (2015).CrossRefGoogle Scholar
  17. 17.
    M. A. Levina, M. V. Zabalov, V. G. Krasheninnikov, and R. P. Tiger, Polym. Sci., Ser. B 60, 563 (2018).CrossRefGoogle Scholar
  18. 18.
    D. G. Miloslavskiy, E. N. Cherezova, R. A. Ahmedya-nova, and A. G. Liakumovich, Butlerov Commun. 29, 72 (2012).Google Scholar
  19. 19.
    Z. Li, Y. Zhao, S. Yan, X. Wang, M. Kang, J. Wang, and H. Xiang, Catal. Lett. 123, 246 (2008).CrossRefGoogle Scholar
  20. 20.
    K. M. Doll and S. Z. Erhan, Green Chem. 7, 849 (2005).CrossRefGoogle Scholar
  21. 21.
    Z. S. Petrovic, A. Zlatanic, C. C. Lava, and S. Sinadinovic-Fiser, Eur. J. Lipid Sci. Technol. 104, 293 (2002).CrossRefGoogle Scholar
  22. 22.
    A. Zeb and M. Murkovic, Eur. J. Lipid Sci. Technol 112, 844 (2010).CrossRefGoogle Scholar
  23. 23.
    E. Hvattum, Rapid Commun. Mass Spectrom. 15, 187 (2001).CrossRefGoogle Scholar
  24. 24.
    L. A. Marzilli, L. B. Fay, F. Dionisi, and P. Vouros, J. Am. Oil Chem. Soc. 80, 195 (2003).CrossRefGoogle Scholar
  25. 25.
    M. A. Levina, M. V. Zabalov, V. G. Krasheninnikov, and R. P. Tiger, Polym. Sci., Ser. B 59, 497 (2017).CrossRefGoogle Scholar
  26. 26.
    M. V. Zabalov, M. A. Levina, V. G. Krasheninnikov, and R. P. Tiger, Russ. Chem. Bull., Int. Ed. 63, 1740 (2012).Google Scholar
  27. 27.
    M. V. Zabalov, R. P. Tiger, and A. A. Berlin, Dokl. Chem. 441, 355 (2011).CrossRefGoogle Scholar
  28. 28.
    M. V. Zabalov, R. P. Tiger, and A. A. Berlin, Russ. Chem. Bull., Int. Ed. 61, 518 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. A. Levina
    • 1
    Email author
  • D. G. Miloslavskii
    • 2
  • M. V. Zabalov
    • 1
  • M. L. Pridatchenko
    • 3
  • A. V. Gorshkov
    • 1
  • V. T. Shashkova
    • 1
  • V. L. Krasheninnikov
    • 1
  • R. P. Tiger
    • 1
  1. 1.Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia
  2. 2.Kazan National Research Technological UniversityKazanRussia
  3. 3.Talroze Institute of Energy Problems of Chemical Physics, Russian Academy of SciencesMoscowRussia

Personalised recommendations