Advertisement

Polymer Science, Series B

, Volume 61, Issue 5, pp 653–662 | Cite as

Polyaniline–Graphene–Gold Nanocomposite for Visible Light Active Photo Catalysis and Enhanced Thermal Electrical Stability

  • Mudassir HasanEmail author
  • Muhammad M. Hossain
  • Mohammed K. Al Mesfer
  • Mohamed A. Ismail
COMPOSITES
  • 38 Downloads

Abstract

Polyaniline/graphene composite has been recognized as an excellent material for various photocatalytic, electrical and electronic applications. We have incorporated gold nanoparticles into polyaniline/graphene in order to enhance its visible light photocatalytic activity, electrical conductivity and thermal electrical stability at room temperature. Gold nanoparticles are known to absorb visible light efficiently. Graphene has been used as a conductive binding material for polyaniline and gold nanoparticle. A simple facile in situ oxidative chemical polymerization technique has been used to produce composite material. Additionally, structural and optical properties have also been investigated. TEM images clearly revealed that graphene and gold nanoparticles were well dispersed within the PANI matrix for better translation of its properties. Synthesized polyaniline/graphene/gold composite materials showed excellent visible light photocatalytic activity, enhanced electrical conductivity, and thermal electrical stability.

Notes

FUNDING

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha-KSA, for funding this work through General Research Project under grant number (R.G.P. 1/144/40).

REFERENCES

  1. 1.
    M. M. Hossain, O. K. Park, J. R. Hahn, and B. C. Ku, Mater. Lett. 123, 90 (2014).CrossRefGoogle Scholar
  2. 2.
    M. Hossain, H. Shima, M. A. Islam, M. Hasan, and M. Lee, RSC Adv. 6, 4683 (2016).Google Scholar
  3. 3.
    M. Hasan, M. O. Ansari, M. Cho, and M. Lee, Electron. Mater. Lett. 11, 1 (2015).CrossRefGoogle Scholar
  4. 4.
    M. Hasan, A. N. Banerjee, and M. Lee, J. Ind. Eng. Chem. 21, 828 (2015).CrossRefGoogle Scholar
  5. 5.
    M. Hasan and M. Lee, Prog. Nat. Sci.: Mater. Int. 24, 579 (2015).CrossRefGoogle Scholar
  6. 6.
    M. Hasan, M.O. Ansari, M. Cho, and M. Lee, J. Ind. Eng. Chem. 22, 147 (2015).CrossRefGoogle Scholar
  7. 7.
    P. Simon and Y. Gogotsi, Nat. Mater. 7, 845 (2008).CrossRefGoogle Scholar
  8. 8.
    S. Ghazali, M. M. Hossain, A. Khan, M. Y. Khan, and M. Hasan, J. Electron. Mater. 46, 331 (2017).CrossRefGoogle Scholar
  9. 9.
    A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources 157, 11 (2006).CrossRefGoogle Scholar
  10. 10.
    S. Tian, J. Liu, T. Zhu, and W. Knoll, Chem. Mater. 16, 4103 (2004).CrossRefGoogle Scholar
  11. 11.
    Y. Bu and Z. Chen, ACS Appl. Mater. Interfaces 6, 17589 (2014).CrossRefGoogle Scholar
  12. 12.
    V. K. Gupta, M. L. Yola, T. Eren, and N. Atar, Sens. Actuators, B 218, 215 (2015).CrossRefGoogle Scholar
  13. 13.
    Y. Yang and J. Luan, Molecules 17, 2752 (2012).CrossRefGoogle Scholar
  14. 14.
    F. Wang and S. X. Min, Chin. Chem. Lett. 18, 1273 (2007).CrossRefGoogle Scholar
  15. 15.
    S. Chen and G. Sun, ACS Appl. Mater. Interfaces 5, 6473 (2013).CrossRefGoogle Scholar
  16. 16.
    R. Gottam, P. Srinivasan, D. Duc. La, and S. V. Bhosale, New J. Chem. 41, 14595 (2017).CrossRefGoogle Scholar
  17. 17.
    S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, Appl. Phys. Lett. 78, 841 (2001).CrossRefGoogle Scholar
  18. 18.
    Y. Shirota and H. Kageyama, Chem. Rev. 107, 953 (2007).CrossRefGoogle Scholar
  19. 19.
    P. Xiong, L. Wang, X. Sun, B. Xu, and X. Wang, Ind. Eng. Chem. Res. 52, 10105 (2013).CrossRefGoogle Scholar
  20. 20.
    Y. Ide, M. Matsuoka, and M. Ogawa, J. Am. Chem. Soc. 132, 16762 (2010).CrossRefGoogle Scholar
  21. 21.
    J. A. Smith, M. Josowicz, and J. Janata, Phys. Chem. Chem. Phys. 7, 3614 (2005).CrossRefGoogle Scholar
  22. 22.
    W. Jin, L. Han, X. Han, B. Zhang, and P. Xu, RSC Adv. 6, 81983 (2016).Google Scholar
  23. 23.
    M. R. Karim, J. H. Yeum, M. S. Lee, and K. T. Lim, React. Funct. Polym. 68, 1371 (2008).CrossRefGoogle Scholar
  24. 24.
    V. M. Mzendaa, S. A. Goodmana, F. A. Aureta, and L. C. Prinsloob, Synth. Met. 127, 279 (2002).CrossRefGoogle Scholar
  25. 25.
    M. O. Ansari, S. P. Ansari, S. K. Yadav, T. Anwer, M. H. Cho, and F. Mohammad, J. Ind. Eng. Chem. 20, 2010 (2014).CrossRefGoogle Scholar
  26. 26.
    A. Arzak, J. I. Eguiazábal, and J. Nazábal, Polym. Eng. Sci. 31, 586 (1991).CrossRefGoogle Scholar
  27. 27.
    E. M. Sullivan, Y. J. Oh, R. A. Gerhardt, B. Wang, and K. Kalaitzidou, J. Polym. Res. 21, 563 (2014).CrossRefGoogle Scholar
  28. 28.
    M. A. Islam, M. E. Khan, M. M. Hussain, and M. Hasan, Prog. Nat. Sci.: Mater. Int. 26, 341 (2016).CrossRefGoogle Scholar
  29. 29.
    G. K. R. Senadeera, T. Kitamura, and Y. Wada, J. Photochem. Photobiol., A 164, 61 (2004).CrossRefGoogle Scholar
  30. 30.
    O. Kwon and M. L. Mc Kee, J. Phys. Chem. B 104, 1686 (2000).CrossRefGoogle Scholar
  31. 31.
    O. Abdulrazzaq, S. E. Bourdo, V. Saini, F. Watanabe, B. Barnes, A. Ghosh, and A. S. Biris, RSC Adv. 5, 33 (2015).Google Scholar
  32. 32.
    H. Seema, K. C. Kemp, V. Chandra, and K. S. Kim, Nanotechnology 23, 355705 (2012).CrossRefGoogle Scholar
  33. 33.
    M. M. Hossain, H. Shima, S. Son, and J. R. Hahn, RSC Adv. 6, 71450 (2016).Google Scholar
  34. 34.
    M. M. Hossain, H. Shima, M. A. Islam, M. Hasan, and M. Lee, RSC Adv. 6, 4170 (2016).Google Scholar
  35. 35.
    H. Shima, M. M. Hossain, I. Lee, S. Son, and J. R. Hahn, Mater. Chem. Phys. 185, 73 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Mudassir Hasan
    • 1
    Email author
  • Muhammad M. Hossain
    • 2
  • Mohammed K. Al Mesfer
    • 1
  • Mohamed A. Ismail
    • 1
  1. 1.College of Engineering, Department of Chemical Engineering, King Khalid UniversityAbhaKingdom of Saudi Arabia
  2. 2.Advanced Institute of Convergence Technology (AICT), Seoul National UniversitySeoulRepublic of Korea

Personalised recommendations