Synthesis and Characterization of Itaconic Acid Doped Polyaniline/SnO2 Nanocomposites

  • Yanmin WangEmail author
  • Aiping Liu
  • Tingxi Li


Composites comprised by polyaniline doped with itaconic acid and tin oxide (SnO2) were prepared by in situ polymerization method. Aniline was polymerized in the presence of SnO2 to form inorganic–organic nanocomposite materials, in which SnO2 nanoparticles were embedded within polyaniline. The chemical structure, crystallinity, morphology, thermal stability, conductivity, and microwave absorbing properties were characterized. The morphology of the composites is nanorod and polyaniline enwraps SnO2 to form a kind of core-shell nanostructure. Moreover, the composites have better thermal stability and microwave absorbing properties.



This work was supported by National Natural Science Foundation of China (Grant no. 51603116).


  1. 1.
    Y. F. Zhu, Y. Q. Fu, T. Natsuki, and Q. Q. Ni, Polym. Compos. 34, 265 (2013).CrossRefGoogle Scholar
  2. 2.
    C. C. Yang, Y. J. Gung, C. C. Shih, W. C. Hung, and K. H. Wu, J. Magn. Magn. Mater. 323, 933 (2011).CrossRefGoogle Scholar
  3. 3.
    C. G. Zang, and X. P. Cao, Appl. Mech. Mater. 303−306, 2477 (2013).Google Scholar
  4. 4.
    M. A. Soto-Oviedo, O. A. Araújo, R. Faez, M. C. Re-zende, and M.-A. De Paoli, Synth. Met. 156, 1249 (2006).CrossRefGoogle Scholar
  5. 5.
    B. G. Soares, M. L. Celestino, M. Magioli, V. X. Moreira, and D. Khastgir, Synth. Met. 160, 1981 (2010).CrossRefGoogle Scholar
  6. 6.
    L. Shi, X. Wu, L. Lu, X. Yang, and X. Wang, Synth. Met. 160, 989 (2010).CrossRefGoogle Scholar
  7. 7.
    B. K. Sharma, N. Khare, R. Sharma, S. K. Dhawan, V. D. Vankar, and H. C. Gupta, Compos. Sci. Technol. 69, 1932 (2009).CrossRefGoogle Scholar
  8. 8.
    B. K. Sharma, N. Khare, S. K. Dhawan, and H. C. Gupta, J. Alloys Compd. 477, 370 (2009).CrossRefGoogle Scholar
  9. 9.
    D. Shao, C. Chen, and X. Wang, Chem. Eng. J. 185−186, 144 (2012).Google Scholar
  10. 10.
    C. Yang, H. Li, D. Xiong, and Z. Cao, React. Funct. Polym. 69, 137 (2009).CrossRefGoogle Scholar
  11. 11.
    P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, Mater. Chem. Phys. 113, 919 (2009).CrossRefGoogle Scholar
  12. 12.
    Q. Li, C. Zhang, and J. Li, Appl. Surf. Sci. 253, 944 (2010).CrossRefGoogle Scholar
  13. 13.
    J. Zhang, S. Wang, Y. Wang, M. Xu, H. Xia, S. Zhang, W. Huang, X. Guo, and S. Wu, Sens. Actuators, B 139, 369 (2009).CrossRefGoogle Scholar
  14. 14.
    M. Xu, J. Zhang, S. Wang, X. Guo, H. Xia, Y. Wang, S. Zhang, W. Huang, and S. Wu, Sens. Actuators, B 146, 8 (2010).CrossRefGoogle Scholar
  15. 15.
    S. Wang, J. Huang, Y. Zhao, S. Wang, X. Wang, T. Zhang, S. Wu, S. Zhang, and W. Huang, J. Mol. Catal. A: Chem. 259, 245 (2006).CrossRefGoogle Scholar
  16. 16.
    D. V. Raj, N. Ponpandian, D. Mangalaraj, A. Balamurugan, and C. Viswanathan, Ionics 20, 335 (2014).CrossRefGoogle Scholar
  17. 17.
    H. Pang, J. Lu, J. Chen, C. Huang, B. Liu, and X. Zhang, Electrochim. Acta 54, 2610 (2009).CrossRefGoogle Scholar
  18. 18.
    J. M. Ni, X. J. Zhao, B. B. Li, M. D. Zheng, and T. Peng, Key Eng. Mater. 599, 338 (2014).CrossRefGoogle Scholar
  19. 19.
    M. S. Park, G. X. Wang, Y. M. Kang, D. Wexler, S. X. Dou, and H. K. Liu, Angew. Chem. 119, 764 (2007).CrossRefGoogle Scholar
  20. 20.
    X. W. Lou, Y. Wang, C. Yuan, J. Y. Lee, and L. A. Archer, Adv. Mater. 18, 2325 (2006).CrossRefGoogle Scholar
  21. 21.
    H. X. Li, H. Chen, W. Q. Ke, J. H. Xi, Z. Kong, and Z. G. Ji, Key Eng. Mater. 609−610, 169 (2014).Google Scholar
  22. 22.
    G. J. Li, X. H. Zhang, and S. Kawi, Sens. Actuators, B 60, 64 (1999).CrossRefGoogle Scholar
  23. 23.
    H. Pang, C. Huang, J. Chen, B. Liu, Y. Kuang, and X. Zhang, J. Solid State Electrochem. 14, 169 (2009).CrossRefGoogle Scholar
  24. 24.
    K. Duttaand S. De, Mater. Lett. 61, 4967 (2007).Google Scholar
  25. 25.
    T. Xiang, Z. Lin, and Y. Qu, J. Nanosci. Nanotechnol. 15, 4493 (2015)CrossRefGoogle Scholar
  26. 26.
    W. Shen, M. Shi, M. Wang, and H. Chen, Mater. Chem. Phys. 122, 588 (2010).CrossRefGoogle Scholar
  27. 27.
    Y. Wang, H. Zheng, L. Jia, H. Li, T. Li, K. Chen, and Y. Gu, J. Macromol. Sci., Part A: Pure Appl. Chem. 51, 577 (2014).CrossRefGoogle Scholar
  28. 28.
    Y. Wang, H. Zheng, L. Jia, H. Li, T. Li, K. Chen, Y. Gu, and J. Ding, J. Macromol. Sci., Part A: Pure Appl. Chem. 51, 619 (2014).CrossRefGoogle Scholar
  29. 29.
    S. S. Umare, B. H. Shambharkar, and R. S. Ningthoujam, Synth. Met. 160, 1815 (2010).CrossRefGoogle Scholar
  30. 30.
    L. Sun, Y. Shi, Z. He, B. Li, and J. Liu, Synth. Met. 162, 2183 (2012).CrossRefGoogle Scholar
  31. 31.
    Z. He, Y. Fang, X. Wang, and H. Pang, Synth. Met. 161, 420 (2011).CrossRefGoogle Scholar
  32. 32.
    Y. Zhou, W. Zhang, Z. Pan, and B. Zhao, J. Mater. Sci.: Mater. Electron. 28,10921 (2017).Google Scholar
  33. 33.
    J. Liu, J. Zhang, Y. Li, and M. Zhang, Mater. Chem. Phys. 163,470 (2015).CrossRefGoogle Scholar
  34. 34.
    X. Chen, and S. Qi, J. Sol-Gel Sci. Technol. 81, 824 (2017).CrossRefGoogle Scholar
  35. 35.
    Y. Zhang, J. Liu, Y. Zhang, J. Liua, and Y. Duan, RSC Adv. 7, 54031 (2017).Google Scholar
  36. 36.
    D. Han, N. Xiao, H. Hu, B. Liu, G. Song, and H. Yan, RSC Adv. 5, 97944 (2015).Google Scholar
  37. 37.
    H. Qiu, J. Wang, S. Qi, Z. He, X. Fan, and Y. Dong, J. Mater. Sci.: Mater. Electron. 26, 564 (2014).Google Scholar
  38. 38.
    J. D. Sudha, S. Sivakala, R. Prasanth, V. L. Reena, and P. Radhakrishnan Nair, Compos. Sci. Technol. 69,358 (2009).CrossRefGoogle Scholar
  39. 39.
    J. Lyu, X. Zhao, X. Hou, Y. Zhang, T. Li, and Y. Yan, Compos. Sci. Technol. 149,159 (2017).CrossRefGoogle Scholar
  40. 40.
    P. Liu, Y. Huang, and X. Zhang, Synth. Met. 76, 201 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.School of Materials Science and Engineering, Shandong University of Science and TechnologyQingdaoChina

Personalised recommendations