Advertisement

Rapid SARA ATRP of Methyl Acrylate in Polyethylene Glycol Mediated by a Mixed Sulfite/CuBr2 Catalytic System

  • Xian Rong ShenEmail author
  • Yi Xin Xiang
  • Jian Gang Gao
POLYMERIZATION
  • 8 Downloads

Abstract

Supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP) of methyl acrylate was successfully performed in inexpensive, eco-friendly polyethylene glycol solvents and catalyzed by a mixed sulfite/CuBr2 system at room temperature. The presence of polyethylene glycol in the reaction mixtures allowed fast and controlled polymerizations throughout the whole reaction time. Remarkably, a fast polymerization can be achieved with a monomer conversion reaching 90% in only 50 min using PEG 200 as the reaction solvent. The controlled character of the ATRP of methyl acrylate was confirmed by the linear increase in molecular weight with monomer conversion, the narrow molecular weight distributions (Mw/Mn = 1.15) and the results of chain extension experiments. 1H NMR analysis also confirmed the molecular structure and chain-end functionality of the obtained polymers, and the effects of PEG molecular weight and inorganic sulfites on the polymerization behavior were investigated.

Notes

ACKNOWLEDGMENTS

This work was supported by the Natural Science Foundation of the Anhui Higher Education Institutions of China (KJ2016A059) and the Youthful Science Foundation for the Talents of Anhui Polytechnic University (2017YQQ003).

REFERENCES

  1. 1.
    K. Matyjaszewski and J. Xia, Chem. Rev. 101, 2921 (2001).CrossRefGoogle Scholar
  2. 2.
    N. V. Tsarevsky and K.Matyjaszewski, Chem. Rev. 107, 2270 (2007).CrossRefGoogle Scholar
  3. 3.
    K. Min, H. Gao, and K. Matyjaszewski, Macromolecules 40, 1789 (2007).CrossRefGoogle Scholar
  4. 4.
    G. Zhu, L. Zhang, Z. Zhang, J. Zhu, Y. Tu, Z. Cheng, and X. Zhu, Macromolecules 44, 3233(2011).CrossRefGoogle Scholar
  5. 5.
    P. V. Mendonça, D. Konkolewicz, S. E. Averick, A. C. Serra, A. V. Popov, T. Guliashvili, and J. F. Coelho, Polym. Chem. 5, 5829 (2014).CrossRefGoogle Scholar
  6. 6.
    G. Lligadas, B. M. Rosen, C. A. Bell, M. J. Monteiro, and V. Percec, Macromolecules 41, 8365 (2008).CrossRefGoogle Scholar
  7. 7.
    A. J. Magenau, N. C. Strandwitz, A. Gennaro, and K. Matyjaszewski, Science 332, 81 (2011).CrossRefGoogle Scholar
  8. 8.
    T. G. Ribelli, D. Konkolewicz, S. Bernhard, and K. Matyjaszewski, J. Am. Chem. Soc. 136, 13303(2014).CrossRefGoogle Scholar
  9. 9.
    D. Konkolewicz, P. Krys, J. R. Góis, P. V. Mendonça, M. Zhong, Y. Wang, and K. Matyjaszewski, Macromolecules 47, 560 (2014).CrossRefGoogle Scholar
  10. 10.
    C. M. Abreu, A. C. Serra, A. V. Popov, K. Matyjaszewski, T. Guliashvili, and J. F. Coelho, Polym. Chem. 4, 5629(2013).CrossRefGoogle Scholar
  11. 11.
    J. R. Góis, N. Rocha, A. V. Popov, T. Guliashvili, K. Matyjaszewski, A. C. Serra, and J. F. Coelho, Polym. Chem. 5, 3919 (2014).CrossRefGoogle Scholar
  12. 12.
    J. P. Mendes, J. R. Gois, A. S. Trino, F. Catalão, A. C. Serra, and J. F. Coelho, J. Polym. Sci., Part A: Polym. Chem. 56, 879 (2018).CrossRefGoogle Scholar
  13. 13.
    C. M. Abreu, L. Fu, S. Carmali, A. C. Serra, K. Matyjaszewski, and J. F. Coelho, Polym. Chem. 8, 375 (2017).CrossRefGoogle Scholar
  14. 14.
    C. M. Abreu, P. V. Mendonça, A. C. Serra, A. V. Popov, K. Matyjaszewski, T. Guliashvili, and J. F. Coelho, ACS Macro. Lett. 1, 1308 (2012).CrossRefGoogle Scholar
  15. 15.
    J. P. Mendes, F.Branco, C. M. Abreu, P. V.Mendonça, A. V. Popov, T. Guliashvili, and J. F. Coelho, ACS Macro Lett. 3, 544 (2014).CrossRefGoogle Scholar
  16. 16.
    J. R. Costa, P. V. Mendonça, P. Maximiano, A. C. Serra, T. Guliashvili, and J. F. Coelho, Macromolecules 48, 6810 (2015).CrossRefGoogle Scholar
  17. 17.
    J. P. Mendes, P. V. Mendonça, P. Maximiano, C. M. Abreu, T. Guliashvili, A. C. Serra, and J. F. Coelho, RSC Adv. 6, 9598 (2016).Google Scholar
  18. 18.
    A. R. Tiwari and B. M. Bhanage, Green Chem. 18, 144 (2016).CrossRefGoogle Scholar
  19. 19.
    J. Xia, M. Cheng, Q. Chen, and M. Cai, Appl. Organomet. Chem. 29, 113 (2015).CrossRefGoogle Scholar
  20. 20.
    L. Zhu, L. Ye, F. Yan, H. Liu, Z. Zhang, and R. Ran, J. Polym. Mater. 31, 333 (2014).Google Scholar
  21. 21.
    S. Perrier, H.Gemici, and S. Li, Chem. Commun. 5, 604 (2004).CrossRefGoogle Scholar
  22. 22.
    Z. Hu, X. Shen, H.Qiu, G. Lai, J. Wu, and W. Li, Eur. Polym. J. 45, 2313 (2009).CrossRefGoogle Scholar
  23. 23.
    M. Ding, X. Jiang, J. Peng, L. Zhang, Z. Cheng, and X. Zhu, Green Chem. 17, 271 (2015).CrossRefGoogle Scholar
  24. 24.
    A. G. West, C. Barner-Kowollik, and S. Perrier, Polymer 51, 3836 (2010).CrossRefGoogle Scholar
  25. 25.
    J. Chen, S. K. Spear, J. G. Huddleston, and R. D. Rogers, Green Chem. 7, 64 (2005).CrossRefGoogle Scholar
  26. 26.
    S. Chandrasekhar, C. Narsihmulu, S. S. Sultana, and N. R. Reddy, Org. Lett. 4, 4399 (2002).CrossRefGoogle Scholar
  27. 27.
    Y. H. Ng, F. di Lena, and C. L. Chai, Macromol. Res. 20, 552 (2012).CrossRefGoogle Scholar
  28. 28.
    P. V. Mendonça, A. C. Serra, J. F. Coelho, A. V. Popov, and T. Guliashvili, Eur. Polym. J. 47, 1460 (2011).CrossRefGoogle Scholar
  29. 29.
    G. Lligadas, J. S. Ladislaw, T. Guliashvili, and V. Percec, J. Polym. Sci., Part A: Polym. Chem. 46, 278 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.School of Biological and Chemical Engineering, Anhui Polytechnic UniversityWuhuChina

Personalised recommendations